Question
Finite Element Method

5.17 Displacements of the three-member truss shown are confined to the plane of the figure, and points 1, 2 and 3 are fixed t
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Elesume Conechvil takla wa timo 0W 6 kb 2 - Climent Stiffnem matricas: I 0.7% 0433 0.750433 Op 23 03-0433-004 1-0.75 -0.423 o

Add a comment
Know the answer?
Add Answer to:
Finite Element Method 5.17 Displacements of the three-member truss shown are confined to the plane of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For the 3-D indeterminate (4-member) TRUSS structure shown in Figure 2A. Given that Px 10K (in...

    For the 3-D indeterminate (4-member) TRUSS structure shown in Figure 2A. Given that Px 10K (in X-direction); Py none (in Y-direction); E 30,000 ksi; A 0.2 square inches. The nodal coordinates, the earth-quake displacement/settlement, and members' connectivity information are given aS Applied Load! Earth-Quake MEMBER #1 NODE # X node-i node-j 120.00" 160.00"| 80.00"| Px=-10 Kips none Py- none 120.00" 160.00"0.00"none 120.00"0.00" 0.00" none 0.00" 0.00"0.00" none 0.00" 0.00" 80.00" none none 2 none 4 4 none 4 +2.00" (in...

  • For the truss shown in the figure below, develop element stiffness matrices in the global co-ordinate system. AE 200 [M...

    For the truss shown in the figure below, develop element stiffness matrices in the global co-ordinate system. AE 200 [MN] is the same for all members. Use the direct stiffness matrix method to: i. Establish all element stiffness matrices in global coordinates ii.Find the displacements in node 3 ii. Calculate the member stresses 4m 3m 20kN 2 2 Use HELM resources on Moodle to find required determinant and inverse matrix. Answer 9.6x103 [MPa] 0.24mmm u3-0.20mm 0.45mm 16x10-3 MPa σ2-3- 1...

  • The plane truss shown in Figure is composed of members having a square 15 mm ×...

    The plane truss shown in Figure is composed of members having a square 15 mm × 15 mm cross section and modulus of elasticity E = 69 GPa. a. Assemble the global stiffness matrix. b. Compute the nodal displacements in the global coordinate system for theloads shown. c. Compute the axial stress in each element 3 kN 3 5 kN 2 1.5 m 4. 1.5 m

  • Finite Element Analysis   CVE705 Stiffness Matrix Problem: An eight-node element assemblage shown is used in a...

    Finite Element Analysis   CVE705 Stiffness Matrix Problem: An eight-node element assemblage shown is used in a finite element analysis. Calculate the diagonal element of the stiffness matrix corresponding to the degree of freedom U100 shown. Use a plane stress case E = 10,000 v = 0.3 t = 1.0 U100

  • Please solve this question clearly and step by step. Thank you 2. A truss assembly shown...

    Please solve this question clearly and step by step. Thank you 2. A truss assembly shown in Figure Q2 below is made of aluminum alloy that has a modulus of elasticity, E = 69 GPa. member is 225 mm2 The cross sectional area of each 4300 N (0, 40) m (40, 40) m 2 500 N 3 (0, 0) FIGURE Q2 Determine the global stiffness matrix for the truss assembly. a. [10 marks] Determine the displacement at node 3. b....

  • The plane truss is subjected to a load as shown in Figure 4. Take E = 200 GPa and cross sectional areas of members 1, 2...

    The plane truss is subjected to a load as shown in Figure 4. Take E = 200 GPa and cross sectional areas of members 1, 2 and 3 as 150, 250 and 200 mm2 respectively a) Assemble the upper triangular part of the global stiffness matrix for the truss b) Determine the horizontal and vertical displacements at node 4 c) Calculate the forces in each member of the truss. (25 marks) 20 kN 3 60° 4 1.5m 2 2 20m...

  • Question 4 The plane truss is subjected to a load as shown in Figure 4. Take E = 200 GPa and cross sectional areas of m...

    Question 4 The plane truss is subjected to a load as shown in Figure 4. Take E = 200 GPa and cross sectional areas of members 1, 2 and 3 as 150, 250 and 200 mm2 respectively a) Assemble the upper triangular part of the global stiffness matrix for the truss. b) Determine the horizontal and vertical displacements at node 4. c) Calculate the forces in each member of the truss. (25 marks) 20 kN 3 600 4 3 1.5m...

  • The plane truss is made of three members and is loaded with force P as shown....

    The plane truss is made of three members and is loaded with force P as shown. Each member has the same E, A and L as shown below. Determine, a) the displacements at node 1, b) the reaction forces. Show all your work. Truss Element Stiffness Matrix [K]_XY^(e) = AE/L [cos^2 theta sin theta cos theta -cos^2 theta -sin theta cos theta sin theta cos theta sin^2 theta -sin theta cos theta -sin^2 theta -cos^2 theta -sin theta cos theta...

  • 2. For the pin-jointed truss shown in Figure Q2.1 applied at node 4. The Young's modulus E(GPa) is the same for...

    2. For the pin-jointed truss shown in Figure Q2.1 applied at node 4. The Young's modulus E(GPa) is the same for the three truss vertical downward force P(kN) is a members. The cross sectional area of each of the truss members is indicated below and expressed in terms of a constant A. By using the stiffness method: (a) Compute the reduced stiffness matrix Kg [5 marks [10 marks (b) Calculate the global displacements of node 4 in terms of P,...

  • Figure Q5(a) shows a plane truss supported by a horizontal spring at the top node. The...

    Figure Q5(a) shows a plane truss supported by a horizontal spring at the top node. The truss members are of a solid circular cross section having a diameter of 20 mm and an elastic modulus (E) of 80 GPa (10° N/m2). The spring has a stiffness constant of k-2000 kN/m. A point load of 15 kN is applied at the top node. The direction of the load is indicated in the figure. The code numbers for elements, nodes, DOFS, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT