Question

Question 5 For the system shown in Figure 4a whose frequency response curves for G, and G2 have been experimentally determine

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Question 5 For the system shown in Figure 4a whose frequency response curves for G, and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • 3. Construct the bode plot on a semilog Graph-paper for a unity feedback system whose open...

    Construct the bode plot on a semilog Graph-paper for a unity feedback system whose open looptransfer function is given by \(G(S)=\frac{100}{S(S+1)(2+S)} .\) From the bode plot determinea) Gain and phase crossover frequencies.b) Gain and Phase margin, andc) Stability of the closed loop system

  • Figure 2 shows the circuit of a filter, whose half-power frequency (break frequency) is defined as...

    Figure 2 shows the circuit of a filter, whose half-power frequency (break frequency) is defined as 1 1 -j 27T fC 27TRC + + Vin V out Figure 2 Find the circuit transfer function, H() (i) [2] Given C 2uF, R= , draw the asymptotic Bode magnitude and phase plots for the (ii) circuit [7] Figure 2 shows the circuit of a filter, whose half-power frequency (break frequency) is defined as 1 1 -j 27T fC 27TRC + + Vin...

  • consider a negative unity feedback system whose feedforward transfer function is: (s) - 1/((s+0.11(s+1)(s+10) Brawa Bode...

    consider a negative unity feedback system whose feedforward transfer function is: (s) - 1/((s+0.11(s+1)(s+10) Brawa Bode plot of the open loop transfer function that includes an asymptotic and approximate estimate for both magnitude and phase. Answer he following questions Asymptotic phase lag at 1 rad/sec is _ degrees 0 -45 -90 0-135 -180 225 270 325 -360 Asymptotic phase lag at 10 rad/sec is _ degrees 0 -45 -90 0 -135 -180 -225 -270 360 none of these Asymptotic phase...

  • Please Show / Explain each step. WILL RATE!!! thanks *6. a) Experimentally obtained data for the...

    Please Show / Explain each step. WILL RATE!!! thanks *6. a) Experimentally obtained data for the frequency response of an amplifier are plotted as small stars (*) in the figure below. Using piecewise straight-line asymptotic approximation, estimate the transfer function of this amplifier. Bode Gain (or log-magnitude) plot of unknown system Gain in dB 00 10' 10% 108 Frequency (rad/s) b) Use Matlab’s “bode” command to plot the Bode log magnitude of your estimated transfer function to see how closely...

  • 6) Consider the feedback system in Figure 1 with the loop transfer function a) [8 Marks]...

    6) Consider the feedback system in Figure 1 with the loop transfer function a) [8 Marks] Plot the Bode diagram for this loop transfer function b) 10 Marks] Determine the frequency at which the gain has unit magnitude and compute the phase angle at that frequency. Controller Process G(s)Y(s) Figure 1

  • consider a negative unity feedback system whose feedforward transfer function is: (s) + 1/[(s+0.11(s+1)(s+10)] Braw a...

    consider a negative unity feedback system whose feedforward transfer function is: (s) + 1/[(s+0.11(s+1)(s+10)] Braw a Bode plot of the open loop transfer function that includes an asymptotic and approximate estimate for both magnitude and phase. Answer he following questions D Question 1 5 pts Low frequency DC gain is_db 00 0 1 10 100 none of these Question 2 Low frequency DC phase lag is _ degrees 0 -90 -180 -270 -360 none of these Question 3 Asymptotic magnitude...

  • Figure 1 Problem 3 For the system shown in the above figure, where G(s) a) Draw...

    Figure 1 Problem 3 For the system shown in the above figure, where G(s) a) Draw a Bode diagram of the open-loop transfer function G(s) when K 10. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K-10? c) Determine the value of K such that the phase margin is 30°. What are the gain margin and the crossover frequencies with this K? Note: You can finish problems 2-3 with the help...

  • The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode...

    The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode plot of open-loop transfer function when K (b) Use bode plot of open-loop transfer function to determine the type of system (do not use transfer function) (c) For what input the system will have constant steady-state error (d) for the unit input in item (c) calculate the constant steady-state error.(Use bode plot to calculate the error.) (e) Design a lead...

  • I got A,B,C done can you do D,E,F Also can you check my solutions please. Thank...

    I got A,B,C done can you do D,E,F Also can you check my solutions please. Thank you ? Question 1 - Consider an unit feedback system whose open-loop transfer function is G(s)-k/ ((s + 1)(s 2 +4s 25)) A. Draw Bode plot of the open-loop system for k-75 B. Calculate the phase and magnitude of G(s) at 1 rad/s for k 75 C. Determine the cross-over frequency, and the phase and gain margins for k-75 (14 marks D. What is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT