Question

Let G be an undirected graph and let X be a subset of the vertices of...

Let G be an undirected graph and let X be a subset of the vertices of G. A connecting tree on X is a tree composed out of the edges of G that contains all the vertices in X.

One way to compute a connecting tree consists of two steps:

(1) Compute a minimum spanning tree T over G.

(2) Delete all the edges out of T not needed to connect vertices in X.

Give an algorithm(Pseudo-code) to carry out step 2 above in time θ(N) where N is the number of vertices in G.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

done m Step Can 2 btaking set < irst seax ch bread th- Run visited h edges edges and mork al T as edges all unmarked edges. d

Add a comment
Know the answer?
Add Answer to:
Let G be an undirected graph and let X be a subset of the vertices of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Let G = (V, E) be an undirected connected graph with n vertices and with...

    2. Let G = (V, E) be an undirected connected graph with n vertices and with an edge-weight function w : E → Z. An edge (u, v) ∈ E is sparkling if it is contained in some minimum spanning tree (MST) of G. The computational problem is to return the set of all sparkling edges in E. Describe an efficient algorithm for this computational problem. You do not need to use pseudocode. What is the asymptotic time complexity of...

  • Let G = (V;E) be an undirected and unweighted graph. Let S be a subset of the vertices. The graph...

    Let G = (V;E) be an undirected and unweighted graph. Let S be a subset of the vertices. The graph induced on S, denoted G[S] is a graph that has vertex set S and an edge between two vertices u, v that is an element of S provided that {u,v} is an edge of G. A subset K of V is called a killer set of G if the deletion of K kills all the edges of G, that is...

  • Problem 3's picture are given below. 5. (a) Let G = (V, E) be a weighted connected undirected simple graph. For n...

    Problem 3's picture are given below. 5. (a) Let G = (V, E) be a weighted connected undirected simple graph. For n 1, let cycles in G. Modify {e1, e2,.. . ,en} be a subset of edges (from E) that includes no Kruskal's algorithm in order to obtain a spanning tree of G that is minimal among all the spanning trees of G that include the edges e1, e2, . . . , Cn. (b) Apply your algorithm in (a)...

  • Let G=(V, E) be a connected graph with a weight w(e) associated with each edge e....

    Let G=(V, E) be a connected graph with a weight w(e) associated with each edge e. Suppose G has n vertices and m edges. Let E’ be a given subset of the edges of E such that the edges of E’ do not form a cycle. (E’ is given as part of input.) Design an O(mlogn) time algorithm for finding a minimum spanning tree of G induced by E’. Prove that your algorithm indeed runs in O(mlogn) time. A minimum...

  • IN JAVA Given is a weighted undirected graph G = (V, E) with positive weights and...

    IN JAVA Given is a weighted undirected graph G = (V, E) with positive weights and a subset of its edges F E. ⊆ E. An F-containing spanning tree of G is a spanning tree that contains all edges from F (there might be other edges as well). Give an algorithm that finds the cost of the minimum-cost F-containing spanning tree of G and runs in time O(m log n) or O(n2). Input: The first line of the text file...

  • Let G = (V, E) be a weighted undirected connected graph that contains a cycle. Let...

    Let G = (V, E) be a weighted undirected connected graph that contains a cycle. Let k ∈ E be the edge with maximum weight among all edges in the cycle. Prove that G has a minimum spanning tree NOT including k.

  • You are given an undirected graph G with weighted edges and a minimum spanning tree T of G.

    You are given an undirected graph G with weighted edges and a minimum spanning tree T of G. Design an algorithm to update the minimum spanning tree when the weight of a single edge is increased. The input to your algorithm should be the edge e and its new weight: your algorithm should modify T so that it is still a MST. Analyze the running time of your algorithm and prove its correctness.

  • You are given an undirected graph G with weighted edges and a minimum spanning tree T of G.

    You are given an undirected graph G with weighted edges and a minimum spanning tree T of G. Design an algorithm to update the minimum spanning tree when the weight of a single edge is decreased. The input to your algorithm should be the edge e and its new weight; your algorithm should modify T so that it is still a MST. Analyze the running time of your algorithm and prove its correctness.

  • 2) Let G ME) be an undirected Graph. A node cover of G is a subset...

    2) Let G ME) be an undirected Graph. A node cover of G is a subset U of the vertex set V such that every edge in E is incident to at least one vertex in U. A minimum node cover MNC) is one with the lowest number of vertices. For example {1,3,5,6is a node cover for the following graph, but 2,3,5} is a min node cover Consider the following Greedy algorithm for this problem: Algorithm NodeCover (V,E) Uempty While...

  • Problem 5. (15 marks) Given a connected, undirected, weighted graph G- (V, E), define the cost...

    Problem 5. (15 marks) Given a connected, undirected, weighted graph G- (V, E), define the cost of a spanning tree to be the maximum weight among the weights associated with the edges of the spanning tree. Design an efficient algorithm to find the spanning tree of G which maximize above defined cost What is the complexity of your algorithm.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT