Question

A woman is driving her van with speed 50.0 mi/h on a horizontal stretch of road....

A woman is driving her van with speed 50.0 mi/h on a horizontal stretch of road.

(a)

When the road is wet, the coefficient of static friction between the road and the tires is 0.102. Find the minimum stopping distance (in m).

m

(b)

When the road is dry,

μs = 0.598.

Find the minimum stopping distance (in m).

m

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Velocity = 50 milh= 22.352 m/s @ acceleration =-119 = 0.9946 -1 m) f² = vetzas Tx S= 22.352² 2X1 s499.61m © az lig=-0.59889.8

Add a comment
Know the answer?
Add Answer to:
A woman is driving her van with speed 50.0 mi/h on a horizontal stretch of road....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car is traveling at 55.0 mi/h on a horizontal highway. (a) If the coefficient of...

    A car is traveling at 55.0 mi/h on a horizontal highway. (a) If the coefficient of static friction between road and tires on a rainy day is 0.102, what is the minimum distance in which the car will stop? (b) What is the stopping distance when the surface is dry and ?s = 0.605?

  • A car is traveling at 53.0 mi/h on a horizontal highway. (a) If the coefficient of...

    A car is traveling at 53.0 mi/h on a horizontal highway. (a) If the coefficient of static friction between road and tires on a rainy day is 0.100, what is the minimum distance in which the car will stop? m (b) What is the stopping distance when the surface is dry and µs = 0.604?

  • A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular...

    A car travels at a constant speed of 32.5 mi/h (14.5 m/s) on a level circular turn of radius 49.0 m, as shown in the bird's-eye view in figure a. What minimum coefficient of static friction, μs, between the tires and the roadway will allow the car to make the circular turn without sliding? 1 ) make the circular turn without sliding? 2 ) At what maximum speed can a car negotiate a turn on a wet road with coefficient...

  • An automobile is travelling at 45 m/s on a horizontal road. If the coefficient of static...

    An automobile is travelling at 45 m/s on a horizontal road. If the coefficient of static friction between the tires and the road is 0.12, find the minimum stopping distance of the car.

  • 2) A car is traveling at 18 m/s on a horizontal highway. (a.) If the coefficient...

    2) A car is traveling at 18 m/s on a horizontal highway. (a.) If the coefficient of friction between the road and the tires on an icy day is 0.10, what is the minimum distance in which the car will stop? (b.) What is the minimum stopping distance when the surface is dry and the coefficient of friction is 0.60?

  • The driver of a car of mass M which is moving along a straight road with...

    The driver of a car of mass M which is moving along a straight road with initial speed v0 sees a deer in her headlights, and reacts quickly, lifting her foot of the gas and applying the brake pedal with maximum force. The anti-lock brakes cause the largest possible static friction force to be applied on the tires by the road, which continue to roll so the car does not skid. The coefficient of static friction between the tires and...

  • 2. A 2500 kg car is driving at 65.0 km/h on a horizontal level road. As...

    2. A 2500 kg car is driving at 65.0 km/h on a horizontal level road. As it approaches a stoplight the light turns red so the brakes are applied as the car hits a patch ofice. With the brakes locked, the car travels 55.0 m before coming to a stop. A) What is the initial kinetic energy of the car? B) How much work is done by friction in stopping the car? c) What is the force of friction stopping...

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • Suppose that the coefficient of friction between a car's tires and the road is 0.600 when...

    Suppose that the coefficient of friction between a car's tires and the road is 0.600 when the road is dry and 0.350 when the road is wet. If on a certain curve the maximum speed the car can go without slipping is 42.0 m/s when the road is dry, what is the maximum speed the car can go on the same curve without slipping when the road is wet?

  • gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates...

    gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates a curve as shown in figure. If the radius of the curve is 40 m and the coefficient of static friction between the tires and dry pavement is 0.6, find the maximum speed the car can have and still make the turn successfully.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT