Question

A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m...

A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m . Initially the block has velocity -3.61 m/s and displacement 0.210 m .

Part A

Find the amplitude of the motion.

Part B

Find the maximum acceleration of the block.

Part C

Find the maximum force the spring exerts on the block.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here,

Amplitude is A

m = 2.4 Kg

k = 317 N/m

part A)

Using conservation of energy

0.50 * m * v^2 + 0.50 * k * x^2 = 0.50 * k * A^2

0.50 * 2.4 * 3.61^2 + 0.50 * 317 * 0.21^2 = 0.50 * 317 * A^2

solving for A

A = 0.38 m

the amplitude is 0.38 m

part B)

k * A = m * a

317 * 0.38 = 2.4 * a

a = 50.2 m/s^2

the maximum acceleration of the block is 50.2 m/s^2

part C)

maximum force = m * a

maximum force = 2.4 * 50.2

maximum force = 120.5 N

Add a comment
Know the answer?
Add Answer to:
A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m...

    A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m . Initially the block has velocity -3.67 m/s and displacement 0.290 m . Find the amplitude of the motion. Find the maximum acceleration of the block. Find the maximum force the spring exerts on the block.

  • A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m...

    A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m . Initially the block has velocity -3.80 m/s and displacement 0.240 m . A. Find the amplitude of the motion. B. Find the maximum acceleration of the block. C. Find the maximum force the spring exerts on the block.

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N)

  • A 2.10-kg frictionless block is attached to an ideal spring with force constant 325 N/m. Initially...

    A 2.10-kg frictionless block is attached to an ideal spring with force constant 325 N/m. Initially the spring is neither stretched nor compressed, but the block is moving in the negative direction at 13.5 m/s. A. Find the amplitude of the motion. Express your answer in meters. B. Find the maximum acceleration of the block. Express your answer in meters per second squared. C. Find the maximum force the spring exerts on the block. Express your answer in newtons.

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N) (I have only 1 left try in mastering physics, please help me thanks)

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t=0 the block has velocity -4.00 m/s and displacement +0.200 m. Part A Find (a) the amplitude and (b) the phase angle. A A = nothing   m   SubmitRequest Answer Part B ϕ ϕ = nothing   rad   SubmitRequest Answer Part C Write an equation for the position as a function of time. Assume x(t) in meters and t in seconds. x(t) x(t) = nothing   m  

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the block has velocity -4.00 and displacement +0.200 .Part AFind (a) the amplitude and (b) the phase angle.=Part Bφ=Part CWrite an equation for the position as a function of time.Assume in meters and in seconds.=

  • A block attached to an ideal spring of force constant (spring constant) 15 N/m executes simple...

    A block attached to an ideal spring of force constant (spring constant) 15 N/m executes simple harmonic motion on a frictionless horizontal surface. At time t = 0 s, the block has a displacement of -0.90 m, a velocity of -0.80 m/s, and an acceleration of +2.9 m/s2 . The mass of the block is closest to? Please show all of your work step by step including formulas used and variables used. A) 2.3 kg B) 2.6 kg C) 4.7...

  • Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300...

    Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. Att0 the block has velocity -4.00 m/s and displacement +0.200 m Find (a) the amplitude and (b) the phase angle SubmitR Request Answer Part B rad Submit Request Answer Part C Write an equation for the position as a function of time. Assume (t) in meters and t in seconds. a (t)- Submit F Request Answer

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At t=0t=0 the block has velocity -4.00 m/sm/s and displacement +0.200 mm. DO 849 O ENS 12:12 PM E + - X Hoe 192. How CAR Ins In yen E Shi Exer $ 100 http WHO Tryit 192. Hel tạc ở openvellum. ollege.com/course.htmliourseld-150112928 D7 Bookmarks Adu New full iman impul de la puy de My ASU 20974450552384175N 10001 Ouh burukuks Physics 210 Summer 2020 Hochary...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT