Question

A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the...

A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the block has velocity -4.00 and displacement +0.200 .


Part A
Find (a) the amplitude and (b) the phase angle.
=




Part B
φ=




Part C
Write an equation for the position as a function of time.
Assume in meters and in seconds.
=



0 0
Add a comment Improve this question Transcribed image text
Answer #1
V^2 = k/m.(A^2-Y^2)
16 = 300/2 (A^2 - 0.2^2)
16 = 150 (A^2 - 0.2^2)
16 = 150A^2 - 6.00
22 = 150A^2
A=0.38 m

a= W^2.A
a= 300/2 x 0.38
a=57.4 m/s^2

F=k.A
F=300 x 0.35
F=114.9Newton
answered by: khent
Add a comment
Know the answer?
Add Answer to:
A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300...

    Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. Att0 the block has velocity -4.00 m/s and displacement +0.200 m Find (a) the amplitude and (b) the phase angle SubmitR Request Answer Part B rad Submit Request Answer Part C Write an equation for the position as a function of time. Assume (t) in meters and t in seconds. a (t)- Submit F Request Answer

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t=0 the block has velocity -4.00 m/s and displacement +0.200 m. Part A Find (a) the amplitude and (b) the phase angle. A A = nothing   m   SubmitRequest Answer Part B ϕ ϕ = nothing   rad   SubmitRequest Answer Part C Write an equation for the position as a function of time. Assume x(t) in meters and t in seconds. x(t) x(t) = nothing   m  

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m Att-0...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m Att-0 the block has velocity -4.00 m/s and displacement +0.200 m. Correct Significant Figures Feedback: Your answer .382 m was either rounded differently or used a different number of significant figures than required for this part. ?: 1.02 rad Correct Significant Figures Feedback: Your answer 1.023 rad was either rounded differently or used a different number of significant figures than required for this part. Part...

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At t=0t=0 the block has velocity -4.00 m/sm/s and displacement +0.200 mm. DO 849 O ENS 12:12 PM E + - X Hoe 192. How CAR Ins In yen E Shi Exer $ 100 http WHO Tryit 192. Hel tạc ở openvellum. ollege.com/course.htmliourseld-150112928 D7 Bookmarks Adu New full iman impul de la puy de My ASU 20974450552384175N 10001 Ouh burukuks Physics 210 Summer 2020 Hochary...

  • A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m...

    A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m . Initially the block has velocity -3.61 m/s and displacement 0.210 m . Part A Find the amplitude of the motion. Part B Find the maximum acceleration of the block. Part C Find the maximum force the spring exerts on the block.

  • A frictionless block of mass 2.30 kg is attached to an ideal spring with force constant...

    A frictionless block of mass 2.30 kg is attached to an ideal spring with force constant 300 N/m . At t=0the spring is neither stretched nor compressed and the block is moving in the negative direction at a speed of 12.1 m/s . A. Find the amplitude. A =____ m B. Find the phase angle. ϕ = ____ rad C. Multiple Choice: Write an equation for the position as a function of time. (a.) x=(− 1.06 m )sin(( 11.4 rad/s...

  • A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m...

    A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m . Initially the block has velocity -3.80 m/s and displacement 0.240 m . A. Find the amplitude of the motion. B. Find the maximum acceleration of the block. C. Find the maximum force the spring exerts on the block.

  • I need to know how to do part c only. Constants A 2.00-kg, frictionless block is...

    I need to know how to do part c only. Constants A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. Att 0 the block has velocity -4.00 m/s and displacement +0.200 m.

  • A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m...

    A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m . Initially the block has velocity -3.67 m/s and displacement 0.290 m . Find the amplitude of the motion. Find the maximum acceleration of the block. Find the maximum force the spring exerts on the block.

  • A 2.00 kg frictionless block is attached to a horizontal spring as shown. Spring constant k...

    A 2.00 kg frictionless block is attached to a horizontal spring as shown. Spring constant k = 200.00 N/m. At t = 0, the position x = 0.225 m, and the velocity is 4.25 m/s toward the right in the positive x direction. Position x as a function of t is: x = A*cos(?t + theta) , where A is the amplitude of motion and ? is the angular frequency discussed Chapter 11 and the notes. Theta is called the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT