Question

A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At t=0t=0 the block has velocity -4.00 m/sm/s and displacement +0.200 mm.DO 849 O ENS 12:12 PM E + - X Hoe 192. How CAR Ins In yen E Shi Exer $ 100 http WHO Tryit 192. Hel tạc ở openvellum. ollege.c

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Im=2kg smass of object. x=0 Ik=300N/m x=0.2m 3 Spring constant 311) 300 2 ..Angular frequency is w= Irad/s w=12-24745 rads Adt Equation of S.H-M is x= A costelt to velocity is v=de V=-law) sen(celt+0) At t=0, x=+0.2m and U=.-4m/s :: 0.2=0.383 cos (O

Add a comment
Know the answer?
Add Answer to:
A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/mN/m. At...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t=0 the block has velocity -4.00 m/s and displacement +0.200 m. Part A Find (a) the amplitude and (b) the phase angle. A A = nothing   m   SubmitRequest Answer Part B ϕ ϕ = nothing   rad   SubmitRequest Answer Part C Write an equation for the position as a function of time. Assume x(t) in meters and t in seconds. x(t) x(t) = nothing   m  

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 . At the block has velocity -4.00 and displacement +0.200 .Part AFind (a) the amplitude and (b) the phase angle.=Part Bφ=Part CWrite an equation for the position as a function of time.Assume in meters and in seconds.=

  • Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300...

    Constants PartA A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. Att0 the block has velocity -4.00 m/s and displacement +0.200 m Find (a) the amplitude and (b) the phase angle SubmitR Request Answer Part B rad Submit Request Answer Part C Write an equation for the position as a function of time. Assume (t) in meters and t in seconds. a (t)- Submit F Request Answer

  • A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m Att-0...

    A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m Att-0 the block has velocity -4.00 m/s and displacement +0.200 m. Correct Significant Figures Feedback: Your answer .382 m was either rounded differently or used a different number of significant figures than required for this part. ?: 1.02 rad Correct Significant Figures Feedback: Your answer 1.023 rad was either rounded differently or used a different number of significant figures than required for this part. Part...

  • A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m...

    A 2.50 kg frictionless block is attached to an ideal spring with force constant 312 N/m . Initially the block has velocity -3.67 m/s and displacement 0.290 m . Find the amplitude of the motion. Find the maximum acceleration of the block. Find the maximum force the spring exerts on the block.

  • A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m...

    A 2.20 kg frictionless block is attached to an ideal spring with force constant 316 N/m . Initially the block has velocity -3.80 m/s and displacement 0.240 m . A. Find the amplitude of the motion. B. Find the maximum acceleration of the block. C. Find the maximum force the spring exerts on the block.

  • A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m...

    A 2.40 kg frictionless block is attached to an ideal spring with force constant 317 N/m . Initially the block has velocity -3.61 m/s and displacement 0.210 m . Part A Find the amplitude of the motion. Part B Find the maximum acceleration of the block. Part C Find the maximum force the spring exerts on the block.

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N) (I have only 1 left try in mastering physics, please help me thanks)

  • A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing...

    A 2.5-kg, frictionless block is attached to an ideal spring with force constant 315N/m is undergoing simple harmonic motion. When the block has displacement 0.27 m, it is moving in the negative x-direction with a speed 4 m/s part a: find the amplitude of the motion ? (........m) part b: find the magnitude of the maximum force the spring exerts on the block? (..........N)

  • A 2.10-kg frictionless block is attached to an ideal spring with force constant 325 N/m. Initially...

    A 2.10-kg frictionless block is attached to an ideal spring with force constant 325 N/m. Initially the spring is neither stretched nor compressed, but the block is moving in the negative direction at 13.5 m/s. A. Find the amplitude of the motion. Express your answer in meters. B. Find the maximum acceleration of the block. Express your answer in meters per second squared. C. Find the maximum force the spring exerts on the block. Express your answer in newtons.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT