Question

A constant-density cylinder of mass 0.5 kg and radius 4 cm can rotate freely about an axis through its center. It has thread wound around an attached axle of radius 0.5 cm that also runs through its center (Fig. as shown) The thread is attached to a mass of 1 kg, which slides down an inclined plane of angle ф-300 with an acceleration of 0.1 m/s. a) Draw a free body diagram of the system by PROBLEM 4: (12pts) R. showing all the forces. b) What is the coefficient of kinetic friction between the block and plane?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A constant-density cylinder of mass 0.5 kg and radius 4 cm can rotate freely about an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform solid cylinder with mass 4M and radius can rotate about the axle. The that...

    A uniform solid cylinder with mass 4M and radius can rotate about the axle. The that is mounted on a frictionless the free end of the 2R rests on a horizontal tabletop. A string s e center of the cylinder so that the cylinder axle through th e string runs over a disk-shaped pulley with mass ess axle through its center. A block of mass M is s rolls without slipping on the tabletop. (-% mr-2 for cylinder/pulley) a) Draw...

  • 2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A str...

    2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the...

  • A string is wrapped around a uniform solid cylinder of radius 4.60 cm, as shown in the figure. The cylinder can rotate...

    A string is wrapped around a uniform solid cylinder of radius 4.60 cm, as shown in the figure. The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block has mass 19.6 kg, and the cylinder has mass 12.3 kg. a) Find the magnitude α of the angular acceleration of the cylinder as the block descends. b)What is the acceleration of the block? c)What is the tension in the string?

  • A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A...

    A uniform, solid cylinder with mass 5 and radius 2*1.8 rests on a horizontal table. A string is attached by a yoke to a frictionless axle through the center of the cylinder such that the cylinder can rotate about the axle at the center. The string runs over a disk-shaped pulley with mass 5 and radius 1.8 that is mounted on a frictionless axle through its center. A block of mass 5 is suspended from the free end of the...

  • A uniform, solid cylinder with mass 3M and radius 2R rests on a horizontal tabletop. A...

    A uniform, solid cylinder with mass 3M and radius 2R rests on a horizontal tabletop. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the free end of the string (the figure...

  • what is the expression for the velocity of the center of mass of the cylinder as...

    what is the expression for the velocity of the center of mass of the cylinder as function of h Problem 10.79 Practice A uniform, solid cylinder with mass M and radius 2R rests on a horizontal tabletop. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on...

  • A wheel with mass of 5 kg and a radius of 15 cm is mounted so...

    A wheel with mass of 5 kg and a radius of 15 cm is mounted so that it spins on an axle through its center. A light-weight string is wound around the circumference of the wheel. If a constant force of 3.0 N is applied to the end of the string for 1.0 seconds, what will be the change in the angular velocity? (Model the wheel as though it were a uniform cylinder.)

  • A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rotate freely...

    A string is wrapped around a uniform solid cylinder of radius r, as shown in (Figure 1). The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m. Part A. Find the magnitude α of the angular acceleration of the cylinder as the block descends. Express your answer in terms of the cylinder's radius r and the magnitude of the acceleration due to gravity...

  • In the figure below a cylinder having a mass of 3.0 kg can rotate about its...

    In the figure below a cylinder having a mass of 3.0 kg can rotate about its central axis through point O. Forces are applied as shown: 1 = 3.0 N, 2 = 2.0 N, 3 = 1.0 N, and 4 = 2.0 N. Also, r = 5.0 cm and R = 12 cm. Find the magnitude and direction of the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.) magnitude ___...

  • In the figure here, a cylinder having a mass of 3.7 kg can rotate about its...

    In the figure here, a cylinder having a mass of 3.7 kg can rotate about its central axis through point O. Forces are applied as shown: F1 = 8.4 N, F2 = 6.4 N, F3 = 6.6 N, and F4 = 5.6 N. Also, r = 7.9 cm and R = 18 cm. Ta?king the clockwise direction to be negative, find the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT