Question

2. A metal block of mass M 1.99 kg resting on a horizontally as shown below is hit by a bullet of mass 1.00x10 kg shot vertically from underneath. At the m moment of impact the bullet was moving upward with a speed 350 ms. After the impact, the block jumps to height of 0.625 m above the surface. prsy a) Find the velocity of the block acquired during the impact. (20 b) Find velocity of the bullet after the impact. (20 pts) (elastic vs c) Determine the type of collision based on your findings inelastic), (20 pts) obviously should not be The impact happens instantaneous, and effects of air resistance considered. Acceleration of g 9.80 m/s


0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 2 2 Huercalluiou as lastic

Add a comment
Know the answer?
Add Answer to:
A metal block of mass M = 1.99 kg rating on a horizontally as shown below...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A bullet of mass m -25.0 g is fired into a stationary block of mass...

    1. A bullet of mass m -25.0 g is fired into a stationary block of mass m, -4.00 kg, which is suspended on a rope, as shown below. The bullet is initially traveling with velocity v. - 400 m/s, passes through the block and emerges with a final velocity horizontally Immediately after the impact the block travels upward with a velocity of 2.00 m's and reaches a vertical height, h before coming to rest. Determine the maximum height the block...

  • wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet re...

    wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet remains in the block after colliding with it. The block moves on the table compressing the spring, with spring constant k 50 Nm, a distance 10 cm. The coefficient of kinetic friction uk 0.2. a) Find the elastic energy stored in...

  • A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself...

    A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 1.5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? v= m/s (b) Calculate the kinetic energy of the bullet plus the block before the collision: K; = (c) Calculate the kinetic energy of the bullet plus the block after the...

  • 5. A bullet of mass m-0.02 kg was horizontally shot into a wood block of mass...

    5. A bullet of mass m-0.02 kg was horizontally shot into a wood block of mass mo 8.98 kg, which is attached at one end of a spring with a spring constant k = 100 N/m, as shown in right Figure. After the bullet was embedded into the wood block, the spring was compressed 10 cm. If the coefficient of kinetic friction is 0.2 between the wood block and the surface, find the initial velocity of the bullet. (10 points)

  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...

    A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 4 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? Vf = m/s ) Calculate the total translational kinetic energy before and after the collision. Ktrans,i = Ktrans,f = (c) Compare the two results and explain why there is a...

  • A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds...

    A bullet of mass 0.017 kg traveling horizontally at a high speed of 210 m/s embeds itself in a block of mass 5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? Vr = 42 x m/s (b) Calculate the total translational kinetic energy before and after the collision. Ktrans,i = 374.85 Ktrans,f= (c) Compare the two results and explain why there...

  • A bullet of mass m is fired horizontally into a block of wood of mass M...

    A bullet of mass m is fired horizontally into a block of wood of mass M lying on a table. The bullet remains in the block and they slide a distance d after the collision. The coefficient of kinetic friction between the wooden block and the table is u. What was the speed of the bullet before the collsion? let m=.020 kg, M=2.00 kg, u=.500, and d=3.00m

  • A bullet of mass Mb is fired horizontally with speed Vi at a wooden block of...

    A bullet of mass Mb is fired horizontally with speed Vi at a wooden block of mass Mw resting on a frictionless table. The bullet hits the block and becomes completely embedded within it. After the bullet has come to rest within the block, the block, with the bullet in it, is traveling at speed Vf . 1)Which of the following best describes this collision? a)perfectly elastic b)partially inelastic c)perfectly inelastic 2) Which of the following quantities, if any, are...

  • 1- A ball with mass M, moving horizontally at 2.8 m/s, collides elastically with a block...

    1- A ball with mass M, moving horizontally at 2.8 m/s, collides elastically with a block with mass 3.6M that is initially hanging at rest from the ceiling on the end of a 58-cm wire. Find the maximum angle through which the block swings after it is hit, in degrees. 2- A 0.15 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.72 m/s. It has a head-on collision with a 0.30...

  • A 2 x 10^-3 kg bullet (m) is shot into a 5 kg block (M) of...

    A 2 x 10^-3 kg bullet (m) is shot into a 5 kg block (M) of wood which is fixed to a friction less horizontal surface. The bullet hits the block at v = 500m/s 1) Calculate the magnitude of the momentum of the bullet as it hits the block. 2) The bullet embeds itself in the block. How much work is done by the resistive force due to the block in bringing the bullet to rest? 3) The average...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT