Question

Problem 06.077 - U-section pipe discharge Water is flowing into and discharging from a pipe U-section as shown in the given f

1 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear please find the answer slide  attached below

2 Thousand 19 TUESDAY JUNE DAY 176-189 WEEK 28 TUESDAY 2 Acc to diagram, m = s7 lgge me = 396 m₂ = 18 legl see 200 A x lley (

Add a comment
Know the answer?
Add Answer to:
Problem 06.077 - U-section pipe discharge Water is flowing into and discharging from a pipe U-section...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1,gage Figure for Problem 3 Problem 3. (15 points) Water is flowing into and discharging from...

    1,gage Figure for Problem 3 Problem 3. (15 points) Water is flowing into and discharging from a U-shaped pipe section as shown. At flange (1), 20 kg/s of water flows into the section with the total absolute pressure of 200 kPa. At flange (2), the absolute pressure is 140 kPa. The diameter of pipes 1 and 2 is 11 cm and 6 cm respectively. Determine the total x and y forces on the flanges connecting the pipe bend. Do not...

  • with explain please As can be seen in the figure, there is an U-section. At section...

    with explain please As can be seen in the figure, there is an U-section. At section (1), total absolute pressure is 150 kPa, and it is 120 kPa for section (2). At section (3), water discharges to the atmosphere which is at 100 kPa. Mass fluxes and diameters can be seen in the figure. Determine the total forces in the directions of x and z. 7 kg/s 3 cm 18 kg/s 110 cm L 25 kg/s 5 cm 1

  • Ignore question [1], just need the problem description from it. [1] Water flowing in a pipe...

    Ignore question [1], just need the problem description from it. [1] Water flowing in a pipe is determined to be moving at the velocities given in the diagram below. The higher level is 3 meters above the lower one and the pressure in the lower portion is measured to be 200 kPa. Determine the pressure inside the upper pipe Treat the water as an ideal fluid obeying Bernoulli's equation. Consider the path connecting poin in the lower pipe with point...

  • [1] Water flowing in a pipe is determined to be moving at the velocities given in...

    [1] Water flowing in a pipe is determined to be moving at the velocities given in the diagram below. The higher level is 3 meters above the lower one and the pressure in the lower portion is measured to be 200 kPa. Determine the pressure inside the upper pipe Treat the water as an ideal fluid obeying Bernoulli's equation. Consider the path connecting poin in the lower pipe with point 2 in the upper pipe a streamline 200 kPa 2.0...

  • Water at 20 C is steadily flowing through a diverging pipe section that is inclined by...

    Water at 20 C is steadily flowing through a diverging pipe section that is inclined by an angle of 30° with respect to the horizontal (See the figure) The total testing section length is 20 m long with an initial pipe diameter of 10 mm (Section 1) and final diameter of 20 mm (Section 2). The small diameter section shows a gage pressure of 100 kPa and average flow velocity 10 m/s. Other values will be obtained by reaching complete...

  • A 10 cm, 90° elbow in a horizontal pipe directs flow of water upward at a...

    A 10 cm, 90° elbow in a horizontal pipe directs flow of water upward at a rate of 40 kg/s. The elevation difference between centers of the pipe exit and the inlet to the elbow is 50 cm. The weight of the elbow and water can be neglected. The momentum flux correction factor is 1.03 at both elbow inlet and outlet. Find: a. gauge pressure at the inlet to the elbow in kPa b. magnitude of anchoring force need to...

  • Problem 1 (30): Water (density p 999 kg/m') flows through a pipe bend and constriction as...

    Problem 1 (30): Water (density p 999 kg/m') flows through a pipe bend and constriction as shown in the schematic. The pipe section is connected to input and output pipes at loc ations A and B. the inlet point A is located 1 m higher in elevation compared to the exit point B. The total loss d ue to pipe friction, bend, and constriction can be approximated as EU = etY2 with et = 2.1 2 Find the total force...

  • Water flow in a pipe and then exit through a bended nozzle as shown in Figure...

    Water flow in a pipe and then exit through a bended nozzle as shown in Figure 3. The nozzle is connected to the main pipe using a flanged joint at (1). The diameter of the pipe is D1 10 cm and is constant, whilst the diameter at the outlet section of the nozzle (2) is D2 3 em. The flowrate of the water is Q = 15 liter/s and the water pressure at the flange is Pi 230 kPa. By...

  • A small plastic pipe carries water horizontally at a speed of 10 m s?1. A section...

    A small plastic pipe carries water horizontally at a speed of 10 m s?1. A section of the pipe bulges out so that the radius is twice that of the rest of the pipe. If the gauge pressure in the pipe is ordi- narily+90 kPa what is the gauge pressure in the bulge (in kPa) (the density of water is 1000 kg m?3)? Give your answer in kPa.

  • 5.26 A nozzle is attached to a vertical pipe and discharges water into the atmosphere as...

    5.26 A nozzle is attached to a vertical pipe and discharges water into the atmosphere as shown in Fig. P5.26. When the discharge is 0.1 m/s, the gage pressure at the flange is 40 kPa. Determine the vertical component of the anchoring force required to hold the nozzle in place. The nozzle has a weight of 200 N, and the volume of water in the nozzle is 0.012 mº. Is the anchoring force directed upward or downward? 300 Area =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT