Question

If (P1 = 3 atm, V1 = 0.2 m3) and (P4 = 1 atm, V4 = 0.4 m3) and the heat absorbed by 12 mol of and ideal gas undergoing the Carnot cycle is 10 kJ, what is the work done? AIsothe Expansion 2 Isothermal Compression Volume →

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In - 12 2. T, 7. 0.9 0.2-2 and 3-4 2-3 and 4 rt 2 2 203.12 K we know a ead a dceo 203.12 wok don 2.42IKJ

Add a comment
Know the answer?
Add Answer to:
If (P1 = 3 atm, V1 = 0.2 m3) and (P4 = 1 atm, V4 =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed...

    12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed by isobaric compression, p = cst.if P1 = 4.4atm, p2 = 1.7atm → ?- m calculate the work done by gas during the expansion. Express work in J = N·m! • For isothermal processes, AT = 0 T = cst → w=faw=fr&v=/MRT AV 594 Show your work like: `x-int_0^5 v(t)dt rarr x-int_0^5(-4*t)dt=-50 m 13. 1 mole of an ideal gas undergoes an isothermal expansion...

  • 6. Consider a system at T1, P1,V1 which is composed of one mole of a classical...

    6. Consider a system at T1, P1,V1 which is composed of one mole of a classical ideal gas for which PV=RT and U=A+BT. Let the system change in four steps. The first step is a very slow compression to P2,V2 at a constant temperature of T1. The second step is a quick compression to T3, P3, V3. The third step is a very slow expansion to P4, V4 at a constant temperature T3. The fourth step is a very quick...

  • The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1,...

    The working substance in an engine is 3.0 x 1023 He atoms. Initially in state 1, the gas volume is V1=1.5 x 10-3 m3 and the pressure is P1=1.00 x 106 N/m2 . The gas undergoes a cycle that consists of four processes: (1→2) an isothermal expansion, (2→3) an isobaric compression until the volume is V3=2.00 x 10-3 m3 and the pressure is 2.00 x105 N/m2 , (3→4) an isothermal compression until the volume is V4=V1, and (4→1) an isochoric...

  • Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot...

    Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot power cycle with maximum and minimum temperatures of 750 K and 300 K, respectively. The heat transfer to the air during the isothermal expansion is 60 kJ. At the end of the isothermal expansion, the pressure is 600 kPa. Assuming the ideal gas model for the air, determine (a) The thermal efficiency. (b) The Pressure and volume at the beginning of the isothermal expansion,...

  • An ideal monatomic gas goes from P1 = 140 atm and V1 = 55 m3 to...

    An ideal monatomic gas goes from P1 = 140 atm and V1 = 55 m3 to P2 and V2 via an adiabatic process. If P2 = 60 atm, what is V2 in m3?

  • An ideal monatomic gas goes from P1 = 150 atm and V1 = 25 m3 to...

    An ideal monatomic gas goes from P1 = 150 atm and V1 = 25 m3 to P2 and V2 via an adiabatic process. If P2 = 40 atm, what is V2 in m3?

  • 3. In a Carnot cycle, the isothermal expansion of an ideal gas takes place at 410...

    3. In a Carnot cycle, the isothermal expansion of an ideal gas takes place at 410 K and the isothermal compression at 320 K. During the expansion 600 J of heat energy are transferred to the gas. Determine (a) the work performed by the gas during the cycle, () the heat transferred to the cooler, (c) the efficiency of the cycle

  • An ideal gas undergoes isothermal compression from an initial volume of 5.28 m3 to a final...

    An ideal gas undergoes isothermal compression from an initial volume of 5.28 m3 to a final volume of 2.89 m3. There is 6.41 mol of the gas, and its temperature is 11.4°C. (a) How much work is done by the gas? (b) How much energy is transferred as heat between the gas and its environment?

  • PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an...

    PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P1 = 0.5 MPa to P2 = 0.4 MPa Process 2–3: Polytropic expansion with n=k to P3 = 0.3 MPa Process 3–4: Constant-pressure compression to V4 = V1 Process 4–1: Constant-volume heating. (a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT