Question

4. Consider the blocks on the inclined surface above. They are attached by a steel rod that does not bend. Suppose the mass of block m 1=15 kg and has a coefficient of kinetic friction μ_k=.2, and a coefficient of static friction μ_s=.9 and θ=42 degrees. Suppose the mass of the second block is m2=25 kg.

a. Suppose the masses are initially at rest. What is the minimum coefficient of friction of m2 required to stop both of them from sliding down the surface?

b. What's the minimum mass of m2 required to make mass m 1 slide up the ramp?

c. Suppose now that mass m 1 is sliding down with a velocity V=2 m / s. What will be the acceleration of the block if mass m 2 has a coefficient of kinetic friction μ- k=.3 (magnitude and direction)?


m2 m1 4. Consider the blocks on the inclined surface above. They are attached by a steel rod that does not bend. Suppose the


1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider the blocks on the inclined surface above.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A box with a mass of 8.67 kg slides up a ramp inclined at an angle...

    A box with a mass of 8.67 kg slides up a ramp inclined at an angle of 28.3° with the horizontal. The initial speed is 1.66 m/s and the coefficient of kinetic friction between the block and the ramp is 0.48. Determine the distance the block slides before coming to rest. m As shown in the figure below, a box of mass m = 35.0 kg is sliding along a horizontal frictionless surface at a speed vi = 5.55 m/s...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over...

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=42.5 with coefficient of kinetic friction μ1=0.205. M2 has a mass of 7.25 kg and is on an incline of θ2=31.5 with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...

  • Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown

    Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=43.5° with coefficient of kinetic friction μ1=0.205 . M2 has a mass of 6.15 kg and is on an incline of θ2=35.5° with coefficient of kinetic friction μ2=0.105. The two-block system is in motion with the block of mass M2 sliding down the ramp.Find the magnitude...

  • 2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m....

    2. Mass mi -10.0 kg is initially held against the spring of spring constant k-100 N/m. The spring is compressed a distance x 0.45 m. When released, m is fired towards a block of mass m2-4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h-0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ.-0.25 and is a distance d-1.06 m long. The blocks...

  • help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k...

    help 2. Mass mi 10.0 kg is initially held against the spring of spring constant k 100 N/m. The spring is compressed a distance x 0.45 m. When released, m, is fired towards a block of mass m 4.4 kg initially at rest at the edge of a horizontal, frictionless table of height h- 0.75 m. A ramp is placed at the end of the table. The ramp has a coefficient of kinetic friction μ-0.25 and is a distance d...

  • Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane

    Two blocks with mass M1 and M2 are arranged as shown with M sitting on an inclined plane and connected with a massless unstretchable string running over a massless, frictionless pulley to M2, which is hanging over the ground. The two masses are released initially from rest. The inclined plane has coefficients of static and kinetic friction μs and μk respectively where the angle θ is small enough that mass M1 , would remain at rest due to static friction if...

  • Two blocks with masses ?1 and ?2 are connected by a massless string that passes over...

    Two blocks with masses ?1 and ?2 are connected by a massless string that passes over a massless pulley as shown. ?1 has a mass of 2.25 kg and is on an incline of ?1=43.5∘ with coefficient of kinetic friction ?1=0.205 . ?2 has a mass of 6.75 kg and is on an incline of ?2=35.5∘ with coefficient of kinetic friction ?2=0.105 . The two‑block system is in motion with the block of mass ?2 sliding down the ramp. Find...

  • two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with...

    two blocks are positioned on surfaces, each inclined at the same angle of 49.4 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 4.61 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.470. Assume static friction has been overcome and that everything can slide....

  • a) Assuming that f=μN, show that the coefficient of (rolling) friction for the car moving down the inclined plane with...

    a) Assuming that f=μN, show that the coefficient of (rolling) friction for the car moving down the inclined plane with a constant speed is gived by μ=m2/mccosθ. Use symbols, not numbers. b)Prove that θ is equal to μk when the blcok sldies down the incline with a constant speed?(use symbols not numbers) b2) if θ is the maximum angle of inlcline justbefore theblcok moves, what is μs in term of θ? c)suppose that the blcok were made to move up...

  • Consider a box on an inclined plane. The inclination angle relative to the horizontal is θ...

    Consider a box on an inclined plane. The inclination angle relative to the horizontal is θ = 30 ° and the mass of the body is 14.9 kg. What is the minimum coefficient of static friction required to keep the body from sliding down? Consider a box on an inclined plane. The inclination angle relative to the horizontal is θ = 30 ° and the mass of the body is 14.9 kg. What is the minimum coefficient of static friction...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT