Question

An air standard Carnot cycle is executed in a closed system between the temperature limits of...

An air standard Carnot cycle is executed in a closed system between the temperature limits of 350 K and 1200 K. The pressure before and after the isothermal compression are 150 kPa and 300 kPa respectively. The net work output per cycle is 0.7 kJ . Use the IG model for air.

Determine the maximum pressure in the cycle.

Determine the heat transfer to air.

Determine the mass of air.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Considsriną air as dal 2-1 , у ラ Y-1 12 2 33 7366 s28

Add a comment
Know the answer?
Add Answer to:
An air standard Carnot cycle is executed in a closed system between the temperature limits of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An air standard Carnot cycle is executed in a closed system between the temperature limits of 350...

    An air standard Carnot cycle is executed in a closed system between the temperature limits of 350 K and 1200 K. The pressure before and after the isothermal compression are 150 kPa and 300 kPa respectively. The net work output per cycle is 0.7 kJ . Use the IG model for air. Determine the maximum pressure in the cycle. Determine the heat transfer to air. Determine the mass of air.

  • Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot...

    Problem 2:2* (Carnot Cycle Application) Two kilograms of air within a piston-cylinder assembly execute a Carnot power cycle with maximum and minimum temperatures of 750 K and 300 K, respectively. The heat transfer to the air during the isothermal expansion is 60 kJ. At the end of the isothermal expansion, the pressure is 600 kPa. Assuming the ideal gas model for the air, determine (a) The thermal efficiency. (b) The Pressure and volume at the beginning of the isothermal expansion,...

  • An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following...

    An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following three processes: 1–2 V = Constant heat addition from 100 kPa and 30°C to 850 kPa 2–3 Isothermal expansion until V3 = 8.5V2 3–1 P = Constant heat rejection to the initial state Assume air has constant properties with cv = 0.718 kJ/kg·K, cp = 1.005 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4. Required information An air-standard cycle is executed within a...

  • Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of...

    Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of the following three processes: 1-2 V Constant heat addition from 100 kPa and 34°C to 850 kPa 2-3 Isothermal expansion until V3-8.5V2 3-1 P Constant heat rejection to the initial state Assume air has constant properties with cv 0.718 kJ/kg-K, Cp 1.005 kJ/kg-K, R- 0.287 kJ/kg-K, and k-1.4 Determine the cycle thermal efficiency. The cycle thermal efficiency is 10.266

  • The air mass of 0.05 kg works on a Carnot machine. The maximum temperature of cycle...

    The air mass of 0.05 kg works on a Carnot machine. The maximum temperature of cycle is 940 ° K and the maximum pressure is 8.4 x 10 ^ 3 Kpa. The heat supplied by cycle is 4.2 Kj. Determine the maximum volume of the cylinder if the minimum temperature. during the cycle it is 300 ° k

  • Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in...

    Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in the figure below). The isothermal expansion and compression processes occur at TH 1400 K and Tc-350 K, respectively. The pressure at the beginning and end of the isothermal compression are p4-100 kPa and pi - 500 kPa, respectively Assume the ideal gas model for the air: ai 0.717 J/g.K Mair- 28.97 g/mol kpv.air 1.4 R 8.314J /(mol K) Adiabatic Isothermal expansion Adiabatic compression Gas...

  • Please Plot with solution An air-standard cycle with constant specific heats is executed in a closed...

    Please Plot with solution An air-standard cycle with constant specific heats is executed in a closed system and is composed of the following four processes: 1-2 Isentropic compression from 100 kPa and 22°C to 600 kPa 2-3 v = constant heat addition to 1500 K 3-4 Isentropic expansion to 100 kPa 4-1 P= constant heat rejection to initial state Study the effect of varying the temperature after the constant-volume heat addition from 1500 K to 2500 K in steps of...

  • 5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for...

    5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for two cases: 1) variable specific heats of air and 2) constant specific heats of air evaluated at 300 K. The following information is given for the cycle: .The pressure and temperature, respectively, are 100 kPa and 300 K at the beginning of compressionn The compression ratio is 9 . The heat addition per unit mass of air is 1350 kJ/kg For each case,...

  • kPa (20) 3. An ideal Stirling cycle uses air as the working fluid. The air is at 400 K and 200 kPa at the beginning...

    kPa (20) 3. An ideal Stirling cycle uses air as the working fluid. The air is at 400 K and 200 kPa at the beginning of the isothermal compression process, and heat is supplied to the air from a source at 1800 K in the amount of 900 kJ/kg.Utilizing cold air-standard assumptions, determine the maximum pressure in the cycle. c,- 1.005 kJ/kg-K, k 1.4, R 0.287 kJ/kg-K tamet sam Proeess kPa (20) 3. An ideal Stirling cycle uses air as...

  • Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are...

    Temperature and pressure at the beginning of the compression process of an air-standard Otto cycle are 295 K and 100 kPa, respectively. The compression ratio is 10 and the maximum temperature during the cycle is 2200 K. Draw P-v and T-s diagrams of the cycle and determine: a) The net work in kJ/kg. b) The thermal efficiency. c) The mean effective pressure, in kPa. Assume R = 287 J/kg.K for air.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT