Question

Consider the motion of a car around a banked curve. The angle of the bank with...

Consider the motion of a car around a banked curve. The angle of the bank with respect to the horizontal is 15.0 degrees, the speed of the car is 20.0 m/s, the radius of curvature for the curve is 30.0 m, and the coefficient of static friction is 0.500. The mass of the car is 1000 kg.

a) What is the frictional force?
b) Is there a speed at which the frictional force would be zero? If so, what is it?

c) What is the maximum speed of the car at which the car can take the curve without slipping?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a) frictional force is given by


f=\mu N=\mu *mgcos\theta

\Rightarrow f=0.500*1000*9.8*cos15.0^{\circ}

\Rightarrow f=4733.04N

(b) In zero friction also, car can run on a banked road, and that speed is given by


v=\sqrt{rgtan\theta }

\Rightarrow v=\sqrt{30.0*9.8*tan15.0^{\circ}}=8.88m/s

(c) maximum speed of the car without slipping is

v=\sqrt{rg\cdot \frac{\mu +tan\theta }{1-\mu tan\theta }}


\Rightarrow v=\sqrt{30.0*9.8\cdot \frac{0.5+tan15}{1-0.5*tan15}}=16.14m/s

Add a comment
Know the answer?
Add Answer to:
Consider the motion of a car around a banked curve. The angle of the bank with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 140 m, the banking angle is θ = 26°, and the coefficient of static friction is μs = 0.39. Find the minimum speed that the car can have without slipping. A car rounds a curve that is banked inward. The radius of curvature of the road is R 140 m, the banking angle is 26e, and the coefficient of static minimum...

  • A curve on a road has a radius of curvature of 500.0m and is banked at...

    A curve on a road has a radius of curvature of 500.0m and is banked at an angle of 10.00 degrees, if a 1700.0Kg car is traveling at a speed of 27.0m/s around the curve, what is the magnitude and direction of the static frictional force needed to keep the car around the curve at this speed?

  • A car with a mass of 2000 kg is moving around a banked curve with a...

    A car with a mass of 2000 kg is moving around a banked curve with a constant speed of 20 m/s (about 44 MPH). The radius of curvature of the curve is 73 m. (a) What is the centripetal acceleration of the car? (b) What is the magnitude of the horizontal component of the normal force that would be required to produce this centripetal acceleration in the absence of any friction?

  • Banked curves are designed so that the radial component of the normal force on the car rounding

    Banked curves are designed so that the radial component of the normal force on the car rounding the curve provides the centripetal force required to execute uniform clrcular motion and safely negotlate the curve. A car rounds a banked curve with banking angle θ-27.1° and radius of curvature 157 m. (a) It the coefficient of static friction between the car's tires and the road is -0.316, what is the range ot speeds for which the car can safely negotiate the turn...

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 152 m, the banking angle is θ = 32°, and the coefficient of static friction is μs = 0.23. Find the minimum speed that the car can have without slipping.

  • A car rounds a curve that is banked inward. The radius of curvature of the road...

    A car rounds a curve that is banked inward. The radius of curvature of the road is R = 142 m, the banking angle is θ = 30°, and the coefficient of static friction is μs = 0.32. Find the minimum speed that the car can have without slipping. I got 36.5196 m/s, which isn't correct.

  • A 1080 kg Smart car is going around a 58 m radius curve. The coefficient of...

    A 1080 kg Smart car is going around a 58 m radius curve. The coefficient of static friction is 0.80. If the curve had a 13degree bank with respect to the horizontal, at what speed should the cargo so there is no friction force? (include units with answer) Determine the maximum speed the car can go around the banked turn without sliding, (include units with answer)

  • PLEASE ANSWER PART B. THANKS! t Banked Frictionless Curve, and Flat Curve with Friction A car...

    PLEASE ANSWER PART B. THANKS! t Banked Frictionless Curve, and Flat Curve with Friction A car of mass M 1500 kg traveling at 45.0 km/hour enters a banked turn covered with ice. The road is banked at an angle 6, and there is no friction between the road and the car's tires as shown in (Figure 1). Use g 9.80 m/s2 throughout this problem. of 2 Figure 1 Part A What is the radius r of the turn if 0...

  • A curve of radius 160 m is banked at an angle of 10. An 800-kg car...

    A curve of radius 160 m is banked at an angle of 10. An 800-kg car moves the curve at 85 km/h without skidding. Neglect the effects of air drag. Find (a) The frictional force exerted by the pavement on the tires (b) The minimum coefficient of static friction between the pavement and the tires.

  • A car rounds a banked curve where the radius of the curvature is 100m, the banking...

    A car rounds a banked curve where the radius of the curvature is 100m, the banking angle is 10o and the coefficient of the static friction is 0.10. Determine the range of speeds the car can travel without slipping up or down the bank.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT