Question

An ideal saturated vapor-compression refrigeration system uses R-12 as the refrgerant. The R-12 leaves the evaporator...

An ideal saturated vapor-compression refrigeration system uses R-12 as the refrgerant. The R-12 leaves the evaporator at -15F, and the condenser pressure is 150 PSIA. The flow rate is 45lbm/min. Determine (a) the tons of refrgeration, (b) the power required, and (c) the COPr.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An ideal saturated vapor-compression refrigeration system uses R-12 as the refrgerant. The R-12 leaves the evaporator...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15...

    An ideal vapor-compression refrigeration cycle with R-134a as the working fluid has an evaporator temperature of-15 °C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of the refrigerant is 3.5 kg/min. Draw and label the cycle on a T-s diagram. What is the coefficient of performance? Ans. 2.98 What is the refrigerating capacity in tons? a. b. c.

  • Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with...

    Problem #1 [30 Points] Vapor Compression Refrigeration Cycle An ideal vapor compression refrigeration system cycle, with ammonia as the working fluid, has an evaporator temperature of -20°C and a condenser pressure of 12 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The mass flow rate of refrigerant is 3 kg/minute. Determine the coefficient of performance and the refrigerating capacity in tons. Given: Find: T-s Process Diagram: Schematic Assume:

  • EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators...

    EXAMPLE 6 A household refrigeration system works with a vapor compression refrigeration system with two evaporators using Refrigerant 134a as the working fluid. This arrangement is used to achieve refrigeration at two different temperatures with a single compressor and a single condenser. The low temperature evaporator operates at -18°C with saturated vapor at its exit and has a refrigerating capacity of 10.5 kW (3 tons). The higher- temperature evaporator produces saturated vapor at 3.2 bar at its exit and has...

  • Problem 10.008 SI Refrigerant 22 enters the compressor of an ideal vapor-compression refrigeration system as saturated...

    Problem 10.008 SI Refrigerant 22 enters the compressor of an ideal vapor-compression refrigeration system as saturated vapor at -30°C with a volumetric flow rate of 5 m/min. The refrigerant leaves the condenser at 19°C, 9 bar. Determine: (a) the magnitude of the compressor power, in kW. (b) the refrigerating capacity, in tons. (c) the coefficient of performance. (d) the rate of entropy production for the cycle, in kW/K. Part A Determine the magnitude of the compressor power, in kW. W....

  • 2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat...

    2. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown below. Ammonia leaves the evaporator as saturated vapor at 1.0 bar and is heated at constant pressure to 5 "C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40 C, 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow...

  • A refrigeration system operates on an ideal vapor compression using R-12 with an evaporator temperature of...

    A refrigeration system operates on an ideal vapor compression using R-12 with an evaporator temperature of minus 30 °C and condenser exit temperature of 49 °C. Determine a) the refrigerating effect per kg, b) the work per kg, c) the heat rejected at the condenser per kg, d) the COP. For a refrigerating capacity of 1 kW, determine e) the total heat rejected at the condenser, f) the work, g) the volume flow rate.

  • 4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- f...

    4. (10 points) An ideal vapor-compression refrigeration cycle is modified to include a counter- flow heat exchanger, as shown below.Ammonia leaves the evaporator as saturated vapor at 1.0 bar and is heated at constant pressure to S "C before entering the compressor. Following isentropic compression to 18 bar, the refrigerant passes through the condenser, exiting at 40 18 bar. The liquid then passes through the heat exchanger, entering the expansion valve at 18 bar. If the mass flow rate of...

  • In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at...

    In a simple vapor compression refrigeration cycle: -   Ammonia exits the evaporator as saturated· vapor at -22°C (State 1 ) .. -   Ammonia enters the condenser at 16 Bar and 160°C (State 2; h2 = 1798.45 kJ/kg) -   Ammonia exits the condenser as saturated l1quid at 16 Bar (State 3; h3 = 376.46 kJ/kg) -   The refrigeration capacity is 150 kW. Draw the system schematic and the T-s diagram and determine: i)   the mass flow rate· of refrigerant, ii)   the...

  • Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as...

    Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as shown. Refrigerant 134a leaves the evaporator as saturated vapor at 0.10 MPa and is heated at constant pressure to 20°C before entering the compressor. Following isentropic compression to 1.4 MPa, the refrigerant passes through the condenser and exits at 45°C and 1.4 MPa. The liquid then passes through the heat exchanger and enters the expansion valve at 1.4 MPa. The mass flow rate of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT