Question

Problem 4 A 2 kg block is released at point A on an inclined plane that is tangent to a circular arc. The plane is tilted 15° form horizontal, and the coefficient of friction is 0.4, Which point is the equilibrium position of the block? 0.4 curve radius 30 cm 25 cm 15 cm (A) A (B) B (C) C (D) D
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Add a comment
Know the answer?
Add Answer to:
Problem 4 A 2 kg block is released at point A on an inclined plane that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 2-kg block is placed on a plane inclined at an angle of 30 to the...

    A 2-kg block is placed on a plane inclined at an angle of 30 to the horizontal and is connected to a spring fastened at the top of the plane. The spring is parallel to the incline and has a force constant of 100 N/m. The block is released from rest when the spring has its equilibrium length. If the block moves a distance of 10 cm before coming to an instantaneous rest, find the magnitude of the force of...

  • A block of mass m = 3.5 kg is on an inclined plane with a coefficient...

    A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.31, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 54°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...

  • (0%) Problem 12: Ablock of mass m 2.1 kg is on an inclined plane with a...

    (0%) Problem 12: Ablock of mass m 2.1 kg is on an inclined plane with a coefficient of friction u 0.36, at an initial height h = 0.44 m above the ground. The plane is inclined at an angle 0 51°. The block is then compressed against a spring a distance Ax 0.17m from its equilibrium point (the spring has a spring constant of ky =27 N/m) and released. At the bottom of the inclined plane is a horizontal plane...

  • A 10 kg block is placed on an inclined plane that is at an angle of...

    A 10 kg block is placed on an inclined plane that is at an angle of 30 degrees with respect to the horizontal. THe coefficient of kinetic friction between the block and the plane is .1. The block is released from rest at 5m above a spring that is also lying on the plane. The spring has a constant of 50 N/m. What is the max compression of the spring?

  • 6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined...

    6. A 5-kg block is pressed against a spring near the bottom of a 30° inclined plane. The spring, (spring constant 450 N/m) is compressed by 0.50 m.When released, the spring projects the block toward the top of the incline. The coefficient of kinetic friction between the block and the inclined plane is 0.3. (a) What is the speed of the block at the instant the block first returns to its equilibrium length? ans [3.9 m/s] (b) Calculate the speed...

  • 25. A block of mass 25 kg is sliding down an inclined plane at a speed...

    25. A block of mass 25 kg is sliding down an inclined plane at a speed of 5.0 m/s when it passes point A Point A is 5.0 m above the ground. The incline plane makes an angle of 46e above the horizontal. Point B is 1.5 m above the ground The coefficient of kinetic friction is 0.30. Find the speed of the block, in m/s, at point E.

  • A 5 kg block is released from rest on a plane with a rough surface that...

    A 5 kg block is released from rest on a plane with a rough surface that is inclined at 25 degree. The coefficient of kinetic friction between the block and the plate is 0.2 and the coefficient of state friction between the block and the plane is 0.5. Draw a free body diagram of the block. What is the acceleration of the block? For the system below, m1 = 10 kg and m2 = 15 kg. The table and pulley...

  • rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined...

    rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined at 28.0 above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2-24.1 kg, as shown in the figure. The coefficient kinetic friction between block 1 and the inclined plane is μ,-0.15. If the blocks are released from rest, what is the acceleration of m2? what is a tension force T on the rope?

  • A block of mass 3.0 kg rests on an inclined plane that makes an angle withthe...

    A block of mass 3.0 kg rests on an inclined plane that makes an angle withthe horizontal of 25◦. If the maximum friction force between the block and the surfaceis 11.6 N, find the coefficient of static friction.

  • A 4.40-kg block is set into motion up an inclined plane with an initial speed of...

    A 4.40-kg block is set into motion up an inclined plane with an initial speed of Vi = 8.20 m/s (see figure below). The block comes to rest after traveling d = 3.00 m along the plane, which is inclined at an angle of 0 = 30.0° to the horizontal. (a) For this motion, determine the change in the block's kinetic energy. (b) For this motion, determine the change in potential energy of the block-Earth system. (c) Determine the friction...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT