Question

1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm is covered with an insulation material [k 0.2 W/(m. C)] of thickness 2 cm. A hot gas at 320°C with a heat transfer coefficient of 200 W/(m2.C) flows inside the tube. The outer surface of the insulation is exposed to cooler air at 20°C with a heat transfer coefficient of 50 W/(m2·°C). Calculate a) The heat loss from the tube to the air for a 5-cm length of the tube. b) The temperature drops due to the thermal resistances of the hot gas flow, the steel tube, the insulation layer, and the outside air.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • please help me ASAP 2. [10] COI A steel tube (ks - 43.26 W/mK) of 5.08...

    please help me ASAP 2. [10] COI A steel tube (ks - 43.26 W/mK) of 5.08 cm inner diameter and 7.62 em outer diameter is covered with 2.5 cm layer of insulation (k, -0.208 W/mK) the inside surface of the tube receivers heat from a hot gas at the temperature of 316°C with heat transfer co-efficient of 28 W/mK. While the outer surface exposed to the ambient air at 30°C with heat transfer co- efficient of 17 W/mK. Calculate heat...

  • system, hot water at an average temperature of 80°C is flowing through a 15-m section of...

    system, hot water at an average temperature of 80°C is flowing through a 15-m section of a cast In a heating iron pipe (k 50 W/m K) whose inner and outer diameters are 4 cm and 5 cm, respectively. The outer surface of the pipe, whose emissivity is 0.75, is exposed to the cold air at 10°C in the basement. with a heat transfer coefficient of 15 W/m2.K. The heat transfer coefficient at the inner surface of the pipe is...

  • Superheated steam flows steadily through steel tubing (k 35 W/m-K) applying a tube inner surface temperature...

    Superheated steam flows steadily through steel tubing (k 35 W/m-K) applying a tube inner surface temperature of 575°C. The tubing has an inner diameter of 300 mm and a wall thickness of 30 mm. Insulation (k 0.10 W/m-K) is applied to the outer surface of the tube while thin aluminum sheet is applied around the insulation as a protective covering. The ambient air at 27°C provides a convection coefficient of 6 W/m2-K. Determine the minimum insulation thickness necessary (mm) to...

  • art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe...

    art II- Show your work 17 Marks team at 320°C flows in a stainless steel pipe (kr 15 W/m "C) whose inner and outer diameters are 5 em and 5.5 cm, respectively. The pipe is covered with 3-cm-thick glass wool insulation (k 0.038 W m·°C). Heat is lost to the surroundings at 5°C by natural convection and radiation, with a combined natural convection and radiation heat transfer coefficient of hi-15 w/m.。C. The convective heat transfer coefficient inside the pipe to...

  • The wall of a furnace consists of two parts, a ceramic brick lining (k=1.1 W/m C,....

    The wall of a furnace consists of two parts, a ceramic brick lining (k=1.1 W/m C,. l=20 mm) and an outer steel wall (k=50 W/ m C, l=10 mm). The inner heat transfer coefficient is 29 W/ m2 C and the outer heat transfer coefficient is 14 W/ m2 C. Taking the bulk temperature of the furnace to be 1000 C and the air temperature outside the furnace as 15 C calculate the temperature of the outer steel wall exposed...

  • For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and...

    For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and the insulation material is mounted between four layers of carbon steel (2 mm thickness), the carbon layers are separated by a 2 mm air gap (kair-0.025 W/mK). Figure 3, the thermal conductivity of the carbon steel is (k-15.5 W/m.K). The temperature inside the wall is maintained at 6 °C. The environmental temperature is 24°C. The engineer would like to avoid condensation occurring at outer...

  • 2-157 A long electrical resistance wire of radius r.-0.25 cm has a thermal conductivity kwire-15 W/m-K. Heat is gene...

    2-157 A long electrical resistance wire of radius r.-0.25 cm has a thermal conductivity kwire-15 W/m-K. Heat is generated uniformly in the wire as a result of resistance heating at a constant rate of 0.5 W/cm3. The wire is covered with polyethylene insulation with a thickness of 0.25 cm and thermal conductivity of ks 0.4 W/m K. The outer surface of the insulation is subjected to free convection in air at 20°C and a convection heat transfer coefficient of 2...

  • NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used...

    NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used to route superheated steam from the boller to the turbine in a power plant. Safety and economic concerns make it practical to add a 200-mm layer of Insulation (k =0.1 W/mK) to each tube, which is wrapped in a thin sheet of aluminum with an emissivity e =0.15. The air (with a convective coefficient h =5 W/m2K) and wail temperatures of the plant are...

  • An industrial freezer is designed to operate with an internal air temperature of -20 °C when...

    An industrial freezer is designed to operate with an internal air temperature of -20 °C when the external air temperature is 25 °C and the internal and external heat transfer coefficients are 12 W/m2K and 8 W/m2.K respectively The walls of the freezer have a composite construction, comprising of an inner layer of plastic (k = 1 W/m•K, and thickness of 3 mm), and an outer layer of stainless steel (k = 16 W/mok, and thickness of 1 mm). Sandwiched...

  • Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of...

    Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of 16 W m-1 K -1 whose inner and outer diameters are 5 and 6 cm respectively. The pipe is covered with 3 cm think insulation having a thermal conductivity of 0.035 W m-1 K -1 . The combined convection and radiation heat transfer coefficient at the outside surface of the insulation is 20 W m-2 K -1 and the surroundings are at 10 °C....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT