Question

2. [10] COI A steel tube (ks - 43.26 W/mK) of 5.08 cm inner diameter and 7.62 em outer diameter is covered with 2.5 cm layer

please help me ASAP

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution - To calculate heat loss- we first 2 (2+2) Too=30°c make / equivalent resistine circuit - TE=316°c) ho hi Iri R4 Kg

Add a comment
Know the answer?
Add Answer to:
please help me ASAP 2. [10] COI A steel tube (ks - 43.26 W/mK) of 5.08...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm...

    1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm is covered with an insulation material [k 0.2 W/(m. C)] of thickness 2 cm. A hot gas at 320°C with a heat transfer coefficient of 200 W/(m2.C) flows inside the tube. The outer surface of the insulation is exposed to cooler air at 20°C with a heat transfer coefficient of 50 W/(m2·°C). Calculate a) The heat loss from the tube to the air for...

  • please help me as soon as possible [20] SECTION B (Attempt any one Question) a) A...

    please help me as soon as possible [20] SECTION B (Attempt any one Question) a) A turbine blade 6 cm long and having a cross sectional area 4.65 cm and perimeter 12 cm is made of stainless steel (k=23.3 W/mK). The temperature at the root is 500 °C. The blade is exposed to a hot gas at 870 °C. The heat transfer coefficient between the blade surface and gas is 442 W/mK. Determine the temperature distribution and rate of heat...

  • Hi, please help me with this problem, please explain me step by step and write with very good cal...

    Hi, please help me with this problem, please explain me step by step and write with very good calligraphy. Solve the next problems: * Water is heated in a horizontal tube. Water enters at a rate of 6 lbm / s and 60 ° F and is heated to 300 ° F. The water flows through an aluminum tube of 3 in diameter. The pipe is heated by an electric resistance ratio of 405Btu / h per foot of pipe...

  • IF YOU CANNOT SOLVE THEM ALL THEN PLEASE DONT SOLVE ANY. A hollow aluminum sphere, with...

    IF YOU CANNOT SOLVE THEM ALL THEN PLEASE DONT SOLVE ANY. A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of insulating materials. The inner and outer radii of the sphere are 0.15 and 0.18 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface...

  • Q2 (a) A 12 mm diameter mild steel sphere (k = 42.5 W/m K) is exposed...

    Q2 (a) A 12 mm diameter mild steel sphere (k = 42.5 W/m K) is exposed to cooling airflow at 27 "C resulting in the convective coefficient, h = 114 W/m' K. The relevant properties of mild steel are given as follows: Density p= 7850 kg/m . Specific heat c = 475 J/kg K and thermal diffusivity a = 0.043 m/hr Determine: (i) Time required to cool the sphere (lumped parameter system) from 540 °C to 95°C. [7 marks] (ii)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT