Question

Superheated steam flows steadily through steel tubing (k 35 W/m-K) applying a tube inner surface temperature of 575°C. The tu

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given data

35 W/mK

0.10 WmK

0.30.15 m 2

r20.150.03 0.18 m

T = 575 °C

T3= 50 °C

T=27 °C

\textup{By energy analysis}

2*ㅠ* L * (Ti -13)- h *2*ㅠ * T3 * L * (T3-14) (I() k2

\frac{\left ( T_{1}-T_{3} \right )}{\frac{ln\left ( \frac{r_{2}}{r_{1}} \right )}{k_{1}}+\frac{ln\left ( \frac{r_{3}}{r_{2}} \right )}{k_{2}}}=h*r_{3}*\left ( T_{3}-T_{4} \right )

575- 50 6r3 (50 27) tn( 0.1 O.18 0.15 35 rs 0.18

3.80434=r_{3}*\left ( \frac{ln\left ( \frac{0.18}{0.15} \right )}{35}+ \frac{ln\left ( \frac{r_{3}}{0.18} \right )}{0.1} \right )

T3 3.80434 5.209187 10* 3 10 r3*In (a1

5.209187*10^{-3}*r_{3}+10*r_{3}*ln\left ( \frac{r_{3}}{0.18} \right )-3.80434=0

\textup{By trail and error method we get}

r_{3}=0.307933\textup{ m}

\textup{minimum insulation thickness of aluminium}\left (t \right )

t=0.307933-0.18=0.127933\textup{ m}

t=127.933\textup{ mm}

Add a comment
Know the answer?
Add Answer to:
Superheated steam flows steadily through steel tubing (k 35 W/m-K) applying a tube inner surface temperature...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used...

    NE Steel tubes (k =35 W/m2.K) of 400-mm inner diameter and 30-mm wall thickness are used to route superheated steam from the boller to the turbine in a power plant. Safety and economic concerns make it practical to add a 200-mm layer of Insulation (k =0.1 W/mK) to each tube, which is wrapped in a thin sheet of aluminum with an emissivity e =0.15. The air (with a convective coefficient h =5 W/m2K) and wail temperatures of the plant are...

  • B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and...

    B Steam flows in a steel pipe, which is insulated by gypsum plaster. The inner and outer diameter of the pipe are 8 cm and 6 cm respectively with pipe length of 20-m. The thickness of gypsum plaster which wraps the pipe is 4 cm. The heat transfer coefficient of the inner pipe and outer insulation are 800 W/m2.°C and 200 W/m2.°C with inner pipe temperature of 200°C and outer insulator temperature of 10°C. The thermal conductivity of the pipe...

  • Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of...

    Steam at 150 °C flows in a stainless steel pipe which has a thermal conductivity of 16 W m-1 K -1 whose inner and outer diameters are 5 and 6 cm respectively. The pipe is covered with 3 cm think insulation having a thermal conductivity of 0.035 W m-1 K -1 . The combined convection and radiation heat transfer coefficient at the outside surface of the insulation is 20 W m-2 K -1 and the surroundings are at 10 °C....

  • a) what is the heat loss per unit length from the pipe in W/m? b) Estimate...

    a) what is the heat loss per unit length from the pipe in W/m? b) Estimate the heat loss per unit length if a 50 mm thick layer of insulation with a conductivity of 0.058 W/m K. Neglect radiation for this part. 3. A 0.20-m diameter, thin-walled steel pipe is used to transport saturated steam at a temperature of 486K in a room for which the air temperature is 25°C and convection heat transfer coefficient at the outer surface of...

  • 1. 1.08x106 grams/h of a superheated fluid flows through a pipe in a power plant. The...

    1. 1.08x106 grams/h of a superheated fluid flows through a pipe in a power plant. The pipe is 1000 cm long, has an inner diameter of 0.05m and a wall thickness of 0.6 cm. The pipe has a thermal conductivity of 0.0017 kW/mK, and the inner pipe surface is at a uniform temperature of 393K. The temperature drop between the inlet and exit of the pipe is 7K, and the constant pressure specific heat of vapor is 2190 J/kgK. If...

  • a 0.4 m diameter, thin walled steel pipe is used to transport saturated steam Problem 3.049...

    a 0.4 m diameter, thin walled steel pipe is used to transport saturated steam Problem 3.049 A 0.4-m-diameter, thin-walled steel pipe is used to transport saturated steam at a pressure of 20 bars in a room for which the air temperature is 25°C and the convection heat transfer coefficient at the outer surface of the pipe is 20 W/m2-K. (a) What is the heat loss per unit length from the bare pipe (no insulation)? (b) Estimate the heat loss per...

  • 1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm...

    1. A steel tube [k 15 W/(m.°C)] of outside diameter 7.6 cm and thickness 1.3 cm is covered with an insulation material [k 0.2 W/(m. C)] of thickness 2 cm. A hot gas at 320°C with a heat transfer coefficient of 200 W/(m2.C) flows inside the tube. The outer surface of the insulation is exposed to cooler air at 20°C with a heat transfer coefficient of 50 W/(m2·°C). Calculate a) The heat loss from the tube to the air for...

  • Question Water at an average temperature of 110°C and an average velocity of 3.5 m/s flows through a 5-m-long Beryllium Copper (k-66 w/m.k) tube merge in a boiling water tank. Do NOT ignore the wall...

    Question Water at an average temperature of 110°C and an average velocity of 3.5 m/s flows through a 5-m-long Beryllium Copper (k-66 w/m.k) tube merge in a boiling water tank. Do NOT ignore the wall resistance. The inner and outer diameters of the tube are Di 1.0 cm and Do 2 cm, respectively. If the convection heat transfer coefficient at the outer surface of the tube where boiling is taking place is ho- 8400 W/m2.K, a) Determine the overall heat...

  • For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and...

    For such aircraft application (Figure 3), a wall is made from insulation material (k-0.030 W/m.K) and the insulation material is mounted between four layers of carbon steel (2 mm thickness), the carbon layers are separated by a 2 mm air gap (kair-0.025 W/mK). Figure 3, the thermal conductivity of the carbon steel is (k-15.5 W/m.K). The temperature inside the wall is maintained at 6 °C. The environmental temperature is 24°C. The engineer would like to avoid condensation occurring at outer...

  • IF YOU CANNOT SOLVE THEM ALL THEN PLEASE DONT SOLVE ANY. A hollow aluminum sphere, with...

    IF YOU CANNOT SOLVE THEM ALL THEN PLEASE DONT SOLVE ANY. A hollow aluminum sphere, with an electrical heater in the center, is used in tests to determine the thermal conductivity of insulating materials. The inner and outer radii of the sphere are 0.15 and 0.18 m, respectively, and testing is done under steady-state conditions with the inner surface of the aluminum maintained at 250°C. In a particular test, a spherical shell of insulation is cast on the outer surface...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT