Question

A parallel plate capacitor is comprised of two metal plates with area A and separated by distance d. This parallel plate capacitor is connected to a battery with voltage AVo. Your answer should depend on A, d, ΔVo, and any other physical constants a. Determine the charge stored on the plates of the capacitor and the energy stored in the capacitor b. Determine the strength of the electric field between the plates of the capacitor c. An experimenter has five of these identical capacitors charged with the same battery. After being charged, each capacitor undergoes a different experiment: (A) remains unchanged (B) the battery is removed and the plates are brought together to half their initial separation (C) the battery remains connected to the plates of the capacitor and the plates are brought together to half their initial separation (D) the battery is removed and a dielectric with K = 2 is placed between the plates (E) the battery remains connected to the plates of the capacitor and a dielectric with K = 2 is placed between the plates The motion of the plates are accomplished using insulating contacts. Rank the energy stored in the three capacitors after the experiments are conducted. Explain your reasoning

0 0
Add a comment Improve this question Transcribed image text
Answer #1

plate at potential dittetentuA Dated.. separation - リーElectn-field. E-24 2. 2. 2.concept used to solve part C is that on disconnecting a batterfrom the charged capacitor, charge over it remains same while if battery remains cconnected, potential remains same

Add a comment
Know the answer?
Add Answer to:
A parallel plate capacitor is comprised of two metal plates with area A and separated by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An air-filled parallel-plate capacitor has plate area A andplate separation d. The capacitor is connected...

    An air-filled parallel-plate capacitor has plate area A and plate separation d. The capacitor is connected to a battery that creates a constant voltage V.A) Find the energy U_0 stored in the capacitor. Express your answer in terms of A, d, V, and ϵ_0.B) The capacitor is now disconnected from the battery, and the plates of the capacitor are then slowly pulled apart until the separation reaches 3d. Find the new energy U_1 of the capacitor after this process. Express...

  • explain why please A parallel-plate capacitor is made of two conducting plates of area A separated...

    explain why please A parallel-plate capacitor is made of two conducting plates of area A separated by a distance d. The capacitor carries a charge Q and is initially connected to a battery that maintains a constant potential difference between the plates. The battery is then disconnected from the plates and the separation between the plates is doubled. ) Which of the following remains constant? Voltage across the capacitor Capacitance of the capacitor Charge on the capacitor Submit (Survey Question)...

  • A parallel-plate vacuum capacitor is connected to a batteryand charged until the stored electric energy is...

    A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is U. The battery is removed, and then a dielectric material with dielectric constant K is inserted into the capacitor, filling the space between the plates. Finally, the capacitor is fully discharged through a resistor (which is connected across the capacitor terminals).A.)Find Ur, the the energy dissipated in the resistor.Express your answer in terms of U and other given quantities.B.) Consider the same situation...

  • The parallel plates in a capacitor, with a plate area of 9.90 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 9.90 cm2 and an air-filled separation of 2.30 mm, are charged by a 4.10 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 6.50 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled separation of 3.30 mm, are charged by a 5.40 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.10 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates

  • The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled separation of 3.30 mm, are charged by a 5.40 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.10 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • The parallel plates in a capacitor, with a plate area of 5.30 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 5.30 cm2 and an air-filled separation of 4.60 mm, are charged by a 3.60 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 6.00 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • Which of the following would increase the capacitance of a parallel-plate capacitor? I. Insert a dielectric...

    Which of the following would increase the capacitance of a parallel-plate capacitor? I. Insert a dielectric between the plates. II. Increase the surface area of each plate. III. Increase the separation distance between the plates. O I and II only OII and III only All of the above. A capacitor is charged with a battery to a voltage V and then disconnected from the battery. A dielectric is inserted between the plates. When the dielectric is inserted, what happens to...

  • The figure shows a parallel-plate capacitor of plate area A and plate separation d. A potential differenceV0 is applied between the plates.

    The figure shows a parallel-plate capacitor of plate area A and plate separation d. A potential differenceV0 is applied between the plates. While the battery remains connected, a dielectric slab of thickness b and dielectric constant κ is placed between the plates as shown. Assume A = 130 cm2, d = 1.94 cm, V0 = 72.6 V, b = 0.735 cm, and κ = 3.15. Calculate (a) the capacitance,(b) the charge on the capacitor plates,(c) the electric field in the gap, and(d)...

  • 2) A 9 volt battery is connected to a parallel plate capacitor with an initial capacitance...

    2) A 9 volt battery is connected to a parallel plate capacitor with an initial capacitance of 5 micro-farads without a dielectric. While still connected to the battery, the sheets are moved a factor of 6 times further apart and a dielectric with a dielectric constant of 1.8 is inserted between the sheets. Then, the battery is disconnected, and after the battery is disconnected, the dielectric is removed and the sheets are brought a factor of 4 times closer together....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT