Question

The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled separation of 3.30 mm, are charged by a 5
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 Here are a (A) - 9.0 gem? ax(100) m2 - 4 A 2 qx 10 to A di. As air filled] ore, d, = 3.3 mm = 3.3X163 mi power supply (N) =1(2 The final stored energy is (Ef) 2 + 2 C2 V 22 On, Eg(9.838x10 3) * * (1313) = 8.70x10-11] final stored is 18.70 X10 3 ene2

Add a comment
Know the answer?
Add Answer to:
The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 9.00 cm2 and an air-filled separation of 3.30 mm, are charged by a 5.40 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.10 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • The parallel plates in a capacitor, with a plate area of 6.60 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 6.60 cm2 and an air-filled separation of 3.30 mm, are charged by a 4.20 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 7.60 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates. (a) Number i Units ► (b)...

  • The parallel plates in a capacitor, with a plate area of 9.90 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 9.90 cm2 and an air-filled separation of 2.30 mm, are charged by a 4.10 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 6.50 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • The parallel plates in a capacitor, with a plate area of 5.30 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 5.30 cm2 and an air-filled separation of 4.60 mm, are charged by a 3.60 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 6.00 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.

  • The parallel plates in a capacitor, with a plate area of 7.60 cm2 and an air-filled...

    The parallel plates in a capacitor, with a plate area of 7.60 cm2 and an air-filled separation of 2.70 mm, are charged by a 6.00 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.30 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates. (a) Number Units (b) Number Units...

  • Chapter 25, Problem 037 Your answer is partially correct. Try again. The parallel plates in a...

    Chapter 25, Problem 037 Your answer is partially correct. Try again. The parallel plates in a capacitor, with a plate area of 7.60 cm2 and an air-filled separation of 4.50 mm, are charged by a 5.40 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 6.40 mm. Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work...

  • The plates of an air-filled parallel-plate capacitor with a plate area of 16.5 cm2 and a...

    The plates of an air-filled parallel-plate capacitor with a plate area of 16.5 cm2 and a separation of 8.80 mm are charged to a 130-V potential difference. After the plates are disconnected from the source, a porcelain dielectric with κ = 6.5 is inserted between the plates of the capacitor. (a) What is the charge on the capacitor before and after the dielectric is inserted? Qi = ___C Qf = ____C (b) What is the capacitance of the capacitor after...

  • A parallel-plate capacitor with plate area 4.60 cm2 and air-gap separation 0.78 mm is connected to...

    A parallel-plate capacitor with plate area 4.60 cm2 and air-gap separation 0.78 mm is connected to a 12.00 V battery, and fully charged. The battery is then disconnected. (a) What is the charge on the capacitor? (b) The plates are now pulled to a separation of 0.98 mm. What is the charge on the capacitor now? (c) What is the potential difference across the plates now? (d) How much work was required to pull the plates to their new separation?...

  • 85. A parallel-plate capacitor with plate area 3.0 cm2 and air- gap separation 0.50 mm is...

    85. A parallel-plate capacitor with plate area 3.0 cm2 and air- gap separation 0.50 mm is connected to a 12-V battery, and fully charged. The battery is then disconnected. (a) What is the charge on the capacitor? (b) The plates are now pulled to a separation of 0.75 mm. What is the charge on the capacitor now? (c) What is the potential difference between the plates now? (d) How much work was required to pull the plates to their new...

  • An air-filled parallel-plate capacitor has plate area A andplate separation d. The capacitor is connected...

    An air-filled parallel-plate capacitor has plate area A and plate separation d. The capacitor is connected to a battery that creates a constant voltage V.A) Find the energy U_0 stored in the capacitor. Express your answer in terms of A, d, V, and ϵ_0.B) The capacitor is now disconnected from the battery, and the plates of the capacitor are then slowly pulled apart until the separation reaches 3d. Find the new energy U_1 of the capacitor after this process. Express...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT