Question

water is flowing in the pipe shown in the figure below, with the 8.25-cm diameter at point 1 tapering to 3.45 cm at point 2,

0 0
Add a comment Improve this question Transcribed image text
Answer #1

4 Tue~ lur nein Y. (.a.r pr@ -R 5, 3 5 지。 이 no 2. (51 +34 55 5-12 v 34 , 55

Add a comment
Know the answer?
Add Answer to:
water is flowing in the pipe shown in the figure below, with the 8.25-cm diameter at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The two charges in the figure below are separated by d-3.50 cm. (Let q113.0 nC and...

    The two charges in the figure below are separated by d-3.50 cm. (Let q113.0 nC and q2 25.5 nC) 60.0° B 92 (a) Find the electric potential at point A 3.1 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Ca accuracy to minimize roundoff error. kV out all intermediate results to at least four-digit (b) Find the electric potential at point B, which...

  • Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...

    Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.85 x 10 Pa and the pipe radius is 2.80 cm. At the higher point located at y = 2.50 m, the pressure is 1.26 x 105 Pa and the pipe radius is 1.60 cm. (a) Find the speed of flow in the lower section. 3.0625 X Your response is within 10% of the correct value. This may...

  • A uniformly charged disk of radius 35.0 cm carries a charge density of 6.00 x 103...

    A uniformly charged disk of radius 35.0 cm carries a charge density of 6.00 x 103 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm 302 Your response is within 10% of the correct value This may be due to roundoff error, or you could have a mistake in your calculation least four-digit accuracy to minimize roundoff error. MN/C carry out all ntermediate results to,...

  • Switch S shown in the figure below has been closed for a long time, and the...

    Switch S shown in the figure below has been closed for a long time, and the electric circuit carries a constant current. Take C 3.00 F, C2 6.00 uF, R1 = 4.00 k, and R2 = 7.00 k. The power delivered to R2 is 2.00 W. R C - S R, (a) Find the charge on C. Q 222.18 Your response is within 10 % of the correct value. This may be due to roundoff error, or you could have...

  • m/s. Determine the inside diameter of the The inside diameters of the larger portions of the...

    m/s. Determine the inside diameter of the The inside diameters of the larger portions of the horizontal pipe depicted in the figure below are 2.06 cm. Water flows to the right at a rate of 1.90 x 10 constriction. |X Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. cm...

  • A 7.80-9 bullet moving at 470 m/s penetrates a tree trunk to a depth of 4.90...

    A 7.80-9 bullet moving at 470 m/s penetrates a tree trunk to a depth of 4.90 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. 18728.48 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. N (b) Assuming the frictional force is...

  • A narrow beam of ultrasonic waves reflects off the liver tumor in the figure below. If...

    A narrow beam of ultrasonic waves reflects off the liver tumor in the figure below. If the speed of the wave is 24.7% less in the liver than in the surrounding medium, determine the depth of the tumor. Incorrect: Your answer is incorrect. Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize...

  • The extremes of the x-ray portion of the electromagnetic spectrum range from lambda = 1.0 times...

    The extremes of the x-ray portion of the electromagnetic spectrum range from lambda = 1.0 times 10^-8 m to 1.0 times 10^-1.3 m. Find the minimum accelerating voltages required to produce wavelengths at these two extremes. V = For 1.0 times 10^-8 m, Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize...

  • 1 = The figure below shows five resistors and two batteries connected in a circuit. What...

    1 = The figure below shows five resistors and two batteries connected in a circuit. What are the currents 11, 12, and 13? (Consider the following values: R1 1.2012, R2 = 2.08 12, R3 = 3.11 12, R4 = 4.04 N, R5 = 6.16 1. Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign. Indicate the direction with the sign of your answer.) 1.2970 x 11 Your response is...

  • PRACTICE IT Use the worked example above to help you solve this problem. Charge q1 6.90...

    PRACTICE IT Use the worked example above to help you solve this problem. Charge q1 6.90 uC is at the origin, and charge 92 =-4.90 pC is on the x-axis, 0.300 m from the origin (see figure). (a) Find the magnitude and direction of the electric field at point P, which has coordinates (O, 0.400) m. 2.53e5 magnitude Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT