Question

3. (10pts) A spring, with a spring constant of 5710 N/m, is compressed by 0.45 m...

3. (10pts) A spring, with a spring constant of 5710 N/m, is compressed by

0.45 m and used to launch a 15.5 kg mass from rest from point A across

a frictionless surface and down a short hill that is H = 1.73 m high. The

surface becomes rough at point B, and the mass comes to a stop at point

C.

(a) (5pts) How much work was done by friction between B and C?

(b) (5pts) If the coefficient of kinetic friction between the mass and the

rough surface is 0.53, how far will it travel before coming to rest? That

is, determine the distance between point B and point C.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

v.-0m/s Between point A and B the energy is conserved. So, mgh+mv But between point B and C the energy is not conserved, as a non -conservative force i.e frictional force is acting between these two points The work done by the frictional force is given by the change in mechanical energy But vc -Om/s fiction (15.5 kg×9.8 m/s* x1.73m)+? x5710 Ninx(0.45)2m2 Wfrrton =-840.92 J Hence the work done by the frictional force is -840.923

W. 840.92 freton friction BC Hr Hg 0.53x15.5x9.8 UTE Dac-10.45m Hence the distance between point B and C is 10.45 m

Add a comment
Know the answer?
Add Answer to:
3. (10pts) A spring, with a spring constant of 5710 N/m, is compressed by 0.45 m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring with spring constant 28 N/m is compressed a distance of 7.5 cm by a...

    A spring with spring constant 28 N/m is compressed a distance of 7.5 cm by a ball with a mass of 201.5 g (see figure below). The ball is then released and rolls without slipping along a horizontal surface, leaving the spring at point A. The process is repeated, using a block instead, with a mass identical to that of the ball. The block compresses the spring by 7.5 cm and is also released, leaving the spring at point A....

  • Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far i...

    Part C Review A 4.5 kg box slides down a 5.2-m -high frictionless hill starting from rest, across a 2.3-m -wide horizontal surface then hits a horizontal spring with spring constant 470 N/m How far is the spring compressed? Express your answer using two significant figures The other end of the spring is anchored against a wall The ground under the spring is frictionless, but the 2.3-m- long horizontal surface is rough. The coefficient of kinetic friction of the box...

  • Please show all work 1. A horizontal massless spring with spring constant 300 N/m is compressed...

    Please show all work 1. A horizontal massless spring with spring constant 300 N/m is compressed 20 cm. The spring launches the block of mass 1 kg. When the block reaches the other side of the room it compresses a massless spring 600 N/m as shown in the figure. The surface is frictionless except the small part of length 2m, which has a coefficient of kinetic friction 0.2. Find the maximum compression of the spring 600 N/m. 300 N/m 600N/m...

  • A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide...

    A 5.0 kg box slides down a 5.0-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The other end of the spring is anchored against a wall. The ground under the spring is frictionless, but the 2.0-m-wide horizontal surface is rough. The coefficient of kinetic friction of the box on this surface is 0.25. (a) What is the speed of the box just before reaching the rough surface?...

  • A spring with a spring constant of 718 N/m lies on a horizontal surface and that...

    A spring with a spring constant of 718 N/m lies on a horizontal surface and that surface is y = 0 m to calculate the gravitational potential energy. A mass of 3 kg is compressed 0.45 meters into the spring and held still. After the mass is released it slides over a horizontal surface in which a 3.4 meter portion of the surface has friction with a coefficient of kinetic friction of 0.30. After the horizontal surface, it travels up...

  • A brick of mass m=0.49 kg is set against a spring with a spring constant of k1 = 639 N/m which has been compressed by a distance of 0.1 m

    A brick of mass m=0.49 kg is set against a spring with a spring constant of k1 = 639 N/m which has been compressed by a distance of 0.1 m. Some distance in front of it, along a frictionless surface, is another spring with a spring constant of k2 = 261 N/m. Part (a) How far, d2 in meters, will the second spring compress when the brick runs into it?  Part (b) How fast, v in meters per second, will the brick...

  • Cart A (mass 2.0 kg) and Cart B (mass 3.0 kg) are separated by a compressed...

    Cart A (mass 2.0 kg) and Cart B (mass 3.0 kg) are separated by a compressed spring and attached to each other by a string. Initially they are sitting at rest on a frictionless surface. When the string is burned, Cart A moves to the left at 1.5 m/s. Cart B moves to the right and encounters a rough surface. Cart B comes to a stop after traveling a distance of 0.35 m on the rough surface. What is the...

  • A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m....

    A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m. Initially, the spring is compressed by a distance of 0.220 m, when the block is released from rest and travels along a horizontal frictionless surface before encountering a frictionless ramp, inclined at an angle of 37° above the horizontal. How far along the ramp does the block travel before momentarily coming to rest?

  • A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal...

    A block of mass 0.528 kg slides with uniform velocity of 3.60 m/s on a horizontal frictionless surface. At some point, it strikes a horizontal spring in equilibrium. If the spring constant is k = 26.1 N/m, by how much will the spring be compressed by the time the block comes to rest? b. What is the amount of compression if the surface is rough under the spring, with coefficient of kinetic friction µk = 0.411?

  • Problem 5 A spring with a spring constant k=200 N/m is used as a launcher for...

    Problem 5 A spring with a spring constant k=200 N/m is used as a launcher for a small block whose mass is 10 g. The block is placed against the compressed spring in a horizontal arrangement on a smooth horizontal surface. The spring, with the block, is compressed 5 cm and then released. a) Find the speed of the block just as it leaves the spring b) The block encounters a rough surface as it leaves the spring. How much...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT