Question

A pendulum has a length L = 1.04 m. It hangs straight down in a jet...

A pendulum has a length L = 1.04 m. It hangs straight down in a jet plane about to take off as shown by the dotted line in the figure.

prob48_sidepend.gif

As the jet accelerates uniformly during take-off, the pendulum deflects horizontally by D = 0.320 m to a new equilibrum postion. Calculate the magnitude of the plane's acceleration.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

in my FYom fiur nn9 mg cos门92 aニ9 ton )フ92-9.TXO.323y a3.17 ms

Add a comment
Know the answer?
Add Answer to:
A pendulum has a length L = 1.04 m. It hangs straight down in a jet...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs from the ceiling. It is pulled back to an small angle of θ = 11.9° from the vertical and released at t = 0. 1)What is the period of oscillation? 2)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3)What is the maximum speed of the pendulum? 5)What is the magnitude of the tangential acceleration as...

  • A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs...

    A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.2° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs from the ceiling. It is pulled back to a small angle of θ = 11.5° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs from the ceiling. It is pulled back to an small angle of θ = 11.9° from the vertical and released at t = 0. 4)What is the angular displacement at t = 3.56 s? (give the answer as a negative angle if the angle is to the left of the vertical) 6)What is the magnitude of the radial acceleration as the pendulum passes through...

  • A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs...

    A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs from the ceiling. It is pulled back to an small angle of θ = 9° from the vertical and released at t = 0. 1) What is the period of oscillation? Answer= 3.34 s 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? Answer= 2.76 N 3) What is the maximum speed of the pendulum?...

  • A simple pendulum with mass m = 1.7 kg and length L = 2.47 m hangs...

    A simple pendulum with mass m = 1.7 kg and length L = 2.47 m hangs from the ceiling. It is pulled back to an small angle of = 11.8° from the vertical and released at t = 0. 1) What is the period of oscillation? s Submit Help You currently have 10 submissions for this question. Only 15 submission are allowed. You can make 5 more submissions for this question. Your sih missions: Computed value: 2.9 Submitted: Thursday, November...

  • Lagrangian Mechanics: A pendulum of mass m and length l hangs from the rear view mirror...

    Lagrangian Mechanics: A pendulum of mass m and length l hangs from the rear view mirror in a car traveling with horizontal acceleration a. Assume the car starts from rest at time t=0. (Solve using Lagrangian Mechanics.) a) Draw a diagram of the situation. Write out the x and y coordinates of the position of the pendulum in the in terms of the angle of the pendulum,  Φ, and the time t. b) Write out T, U, and L in terms...

  • A jetliner, traveling northward, is landing with a speed of 64.6 m/s. Once the jet touches...

    A jetliner, traveling northward, is landing with a speed of 64.6 m/s. Once the jet touches down, it has 768 m of runway in which to reduce its speed to 14.6 m/s. Compute the average acceleration (magnitude and direction) of the plane during landing (take the direction of the plane's motion as positive).

  • A jetliner, traveling northward, is landing with a speed of 59.5 m/s. Once the jet touches...

    A jetliner, traveling northward, is landing with a speed of 59.5 m/s. Once the jet touches down, it has 787 m of runway in which to reduce its speed to 5.75 m/s. Compute the average acceleration (magnitude and direction) of the plane during landing (take the direction of the plane's motion as positive).

  • A plane pendulum of length L and mass m is suspended from a block of mass...

    A plane pendulum of length L and mass m is suspended from a block of mass M. The block moves without friction and is constrained to move horizontally only (i.e. along the x axis). You may assume all motion is confined to the xy plane. At t = 0, both masses are at rest, the block is at   , and the pendulum has angular deflection   with respect to the y axis. a) Using and as generalized coordinates, find the Lagrangian...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT