Question

A plane pendulum of length L and mass m is suspended from a block of mass...

A plane pendulum of length L and mass m is suspended from a block of mass M. The block moves without friction and is constrained to move horizontally only (i.e. along the x axis). You may assume all motion is confined to the xy plane. At t = 0, both masses are at rest, the block is at  x_{M}=x_{0} , and the pendulum has angular deflection  \theta = \theta_{0} with respect to the y axis.

a) Using x_{M} and \theta as generalized coordinates, find the Lagrangian of the system.

b) Obtain the Lagrange equations of motion of the system.

c) Assuming \theta_{0} \ll 1 , find x_{M} and \theta as functions of time.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer lt vs suppose a pendulum rvas N Suspended from a block mass M. The Block moves wihou chon nd is Constrained to move ho吸onallY ie, 나 is confined to Xy plane oboth masses are aethe blotk at H-70, and the pendulum h angular Slem Layang ian the Sysien rv年 Top bob bottom bo b and Cor pechve

Add a comment
Know the answer?
Add Answer to:
A plane pendulum of length L and mass m is suspended from a block of mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass...

    Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass m) that canoscillate on the end of a spring of spring constant k, as shown in the figure at right. (a) Write the Lagrangian in terms of the generalized coordinates x and ?, where x is the extension of the spring from its equilibrium length and ? is the angle of the pendulum from the vertical. Find the two Lagrange equations. (b) Simplify the...

  • A simple pendulum (mass M and length L) is suspended from a cart of mass m...

    A simple pendulum (mass M and length L) is suspended from a cart of mass m that moves freely along a horizontal track shown at right. You might find it helpful to introduce the dimensionless parameters η-m/M and wo- /g/L. a What are the normal frequencies of small oscillations of the system (0 <1)? b Find and describe the corresponding normal modes of the system. c The cart/pendulum systern is held at rest in the configuration x-0 and θ K...

  • A bead of mass M is able to move without friction along a stationary horizontal rod...

    A bead of mass M is able to move without friction along a stationary horizontal rod (directed along the x axis). In addition, a second body of mass m is attached to the first bead and suspended below it via a massless rod of length a. This second mass and rod form a pendulum that is able to swing in the xy-plane (where y is the vertical axis). (a) Obtain the Lagrangian for the system of two masses. (b) Assuming...

  • Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless...

    Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless string of length I. Suppose that that time t-0 the pendulum is put into motion and the length of the string is shortened at a constant rate ot-a (ie. L(t)= Lo-at). Use the angle of the pendulum φ as your generalized coordinate. (a) (2 points) Obtain the Lagrangian and Hamiltonian for this system (b) (0.5 points) Is H conserved? How can you tell? (c)...

  • 4. Consider a double pendulum with identical length, L and mass, m constrained to move in...

    4. Consider a double pendulum with identical length, L and mass, m constrained to move in the x-y plane. Using the Cartesian coordinates, x and y write down the kinetic and potential energies of the system in terms of, and θ2. Find the Lagrangian and two corresponding equations for the system. Assume the angles 0, and 02 are both very small so that sin θ θ and cos θ 1 and state the approximate equations

  • A uniform thin rod of mass m and length 5b is suspended from the ceiling by...

    A uniform thin rod of mass m and length 5b is suspended from the ceiling by a single string of length 2b attached to one end (this end of the rod is called P1). Thus in equilibrium the string and rod hang straight down and the lower end of the rod is a distance 7b from the ceiling (this end of the rod is called P2). The motion is constrained to be in a fixed vertical plane, so we have...

  • 1) Consider a block of mass M connected through the massless rigid rod to the massless...

    1) Consider a block of mass M connected through the massless rigid rod to the massless circular track of radius a on a frictionless horizontal table (see the Figure). A particle of mass m is constrained to move on the vertical circular track. The distance between the center of the circular track and the center of mass of the block of mass M is constant and equal to L. Assume that there is no friction between the track and the...

  • A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at...

    A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at the end of a massless string of length l. Derive the equation of motion from the Euler-Lagrange equation, and solve for the motion in the small angle approximation. B) Assume the massless string can stretch with a restoring force F = -k (r-r0), where r0 is the unstretched length. Write the new Lagrangian and find the equations of motion. C) Can you re-write the...

  • Consider a simple pendulum of length / and mass m placed in a rail-road cart that...

    Consider a simple pendulum of length / and mass m placed in a rail-road cart that has constant acceleration a in the positive x-direction. (Hint: This means that suspension point of the pendulum moves with acceleration a, this needs to be accounted for when considering motion of the pendulum) a) (11 pts.) Find the Lagrangian function of this pendulum. b) (11 pts.) Obtain Lagrange's equations of motion for this pendulum. c) (11 pts.) Find the Hamiltonian function of this pendulum....

  • Question 2 A pendulum is formed by suspending a mass m from the ceiling, using a...

    Question 2 A pendulum is formed by suspending a mass m from the ceiling, using a spring of unstretched length lo and spring constant k (Figure 2). The pendulum moves in a fixed verticał plane. Choose x and y as the generalised coordinates. Set up the Lagrangian. Write down the equations of motion for the generalised variables. [4 marks] X Figure 2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT