Question

Consider a simple pendulum of length / and mass m placed in a rail-road cart that has constant acceleration a in the positive

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Tom (1262 + oil) -UZ -mg COSO L = m(12-02 + 3) + mgl cos Note :- x and o are two independent Co-ordinates . - equation i- HomCamScanner Scanned with . Hailtons equations : liv yous Sob o Bud tij - H TO oso) vBu - zlode barret ü z Aso) ibu leo telutfor x- variable = for o- variable - Po = -4 = + mge (-sine) = -mgesino CS Scanned with CamScannerthumbs up please

If you have any doubt regarding this partiular question then please comment

We can't attempt more than four subpart of a separate question because of HomeworkLib rules

Add a comment
Know the answer?
Add Answer to:
Consider a simple pendulum of length / and mass m placed in a rail-road cart that...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simple pendulum (mass M and length L) is suspended from a cart of mass m...

    A simple pendulum (mass M and length L) is suspended from a cart of mass m that moves freely along a horizontal track shown at right. You might find it helpful to introduce the dimensionless parameters η-m/M and wo- /g/L. a What are the normal frequencies of small oscillations of the system (0 <1)? b Find and describe the corresponding normal modes of the system. c The cart/pendulum systern is held at rest in the configuration x-0 and θ K...

  • Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass...

    Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass m) that canoscillate on the end of a spring of spring constant k, as shown in the figure at right. (a) Write the Lagrangian in terms of the generalized coordinates x and ?, where x is the extension of the spring from its equilibrium length and ? is the angle of the pendulum from the vertical. Find the two Lagrange equations. (b) Simplify the...

  • Problem 2) Consider a simple pendulum consisting of a bob of mass m suspended by a...

    Problem 2) Consider a simple pendulum consisting of a bob of mass m suspended by a massless rigid rod of length l. (a) Find the Hamiltonian of the system by following the prescription given in the textbook. (b) Find the Hamilton's equations of motion.

  • There is a double-pendulum system, each with mass m and length L, attached to a cart of mass M. T...

    There is a double-pendulum system, each with mass m and length L, attached to a cart of mass M. The cart has linear position x, pendulum 1 has angular position θ, and pendulum 2 has angular position φ. The cart has a force, F, applied in the x-direction to the cart. m,L Using sum of forces, sum of moments, and constraint equations, determine the 12 equations 12 unknowns. Solve the system of equations for the 12 unknowns including the EOMs....

  • Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless...

    Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless string of length I. Suppose that that time t-0 the pendulum is put into motion and the length of the string is shortened at a constant rate ot-a (ie. L(t)= Lo-at). Use the angle of the pendulum φ as your generalized coordinate. (a) (2 points) Obtain the Lagrangian and Hamiltonian for this system (b) (0.5 points) Is H conserved? How can you tell? (c)...

  • I think I have most of this question set, but would appractite step by step explaination...

    I think I have most of this question set, but would appractite step by step explaination of questions e), f), g), and h). Thanks! Two masses m1and m2 connected by a spring of elastic constant k slide on a frictionless inclined plane under the effect of gravity. Let a be the angle between the the x axis and the inclined plane, r the distance between the two masses, l the position of the first mass with respect to the top...

  • Problem 2: Cart Standard Pendulum Model Consider the cart standard pendulum system shown in Figur...

    Problem 2: Cart Standard Pendulum Model Consider the cart standard pendulum system shown in Figure 1 with parameters given in Table 1 I C.8 I Ig Figure 1: Cart Standard Pendulum Schematic Syb Definition Unit Variablesr osition of the cart angle that the force applied on cart (control) mass of the cart mass ot t 123 lum makes with the vertic Parameters M5 kg utm 0.5 location of the c.g. of the pendulum above the 4 = m moment of...

  • Solve the following problems: Problem 1: masses&springs Two masses mand m2 connected by a spring of...

    Solve the following problems: Problem 1: masses&springs Two masses mand m2 connected by a spring of elastic constant k slide on a frictionless inclined plane under the effect of gravity. Let a be the angle between the the x axis and the inclined plane, r the distance between the two masses, l the position of the first mass with respect to the top of the plane (see figure). Considering the top of the plane to be the zero for potential...

  • A plane pendulum of length L and mass m is suspended from a block of mass...

    A plane pendulum of length L and mass m is suspended from a block of mass M. The block moves without friction and is constrained to move horizontally only (i.e. along the x axis). You may assume all motion is confined to the xy plane. At t = 0, both masses are at rest, the block is at   , and the pendulum has angular deflection   with respect to the y axis. a) Using and as generalized coordinates, find the Lagrangian...

  • Lagrangian Mechanics: A pendulum of mass m and length l hangs from the rear view mirror...

    Lagrangian Mechanics: A pendulum of mass m and length l hangs from the rear view mirror in a car traveling with horizontal acceleration a. Assume the car starts from rest at time t=0. (Solve using Lagrangian Mechanics.) a) Draw a diagram of the situation. Write out the x and y coordinates of the position of the pendulum in the in terms of the angle of the pendulum,  Φ, and the time t. b) Write out T, U, and L in terms...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT