Question

Question 2 A pendulum is formed by suspending a mass m from the ceiling, using a spring of unstretched length lo and spring c
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Qe , Given Information is to and Spring l to thie system adle M Н. A pendulum consist of mass in cuuquet Length Constantak geH = h 2 m (inteo) - mgl coso- tk (d-do) ² Any Genenalized co-ordinate , pa dd dq 9 pe= IL IL and po dh do am t. am 12 Now, crt tlemiton een for career of motion ) foot generalized co-ordinate ?, for < -ě » -PL IH IZ IH IL ЭН IP 2 ЭН Ipd foro du do

Add a comment
Know the answer?
Add Answer to:
Question 2 A pendulum is formed by suspending a mass m from the ceiling, using a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. (35 points) A pendulum consists of a point mass (m) attached to the end of a spring (massless ...

    2. (35 points) A pendulum consists of a point mass (m) attached to the end of a spring (massless spring, equilibrium length-Lo and spring constant- k). The other end of the spring is attached to the ceiling. Initially the spring is un-sketched but is making an angle θ° with the vertical, the mass is released from rest, see figure below. Let the instantaneous length of the spring be r. Let the acceleration due to gravity be g celing (a) (10...

  • Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass...

    Prob. 7.3: A simple pendulum (mass M and length L) is suspended from a cart (mass m) that canoscillate on the end of a spring of spring constant k, as shown in the figure at right. (a) Write the Lagrangian in terms of the generalized coordinates x and ?, where x is the extension of the spring from its equilibrium length and ? is the angle of the pendulum from the vertical. Find the two Lagrange equations. (b) Simplify the...

  • A plane pendulum of length L and mass m is suspended from a block of mass...

    A plane pendulum of length L and mass m is suspended from a block of mass M. The block moves without friction and is constrained to move horizontally only (i.e. along the x axis). You may assume all motion is confined to the xy plane. At t = 0, both masses are at rest, the block is at   , and the pendulum has angular deflection   with respect to the y axis. a) Using and as generalized coordinates, find the Lagrangian...

  • JUST ANSWER PART B A. A point mass m moves frictionlessly on a horizontal plane. An...

    JUST ANSWER PART B A. A point mass m moves frictionlessly on a horizontal plane. An unusual, anharmonic spring with unstretched length ro is attached between a pivot at the origin and the mass. Let the radial force exerted by the spring be given by Fr =-c(r-ro)" where c is a positive constant. Using plane polar coordinates r and θ: (i) Write down the Lagrangian L(r, θ,0) and use Lagrange's method to find the equations of motion for the mass...

  • 2) A particle of mass m, is attached to a massless rod of length L which...

    2) A particle of mass m, is attached to a massless rod of length L which is pivoted at O and is free to rotate in the vertical plane as shown below. A bead of mass my is free to slide along the smooth rod under the action of a spring of stiffness k and unstretched length Lo. (a) Choose a complete and independent set of generalized coordinates. (b) Derive the governing equations of motion. m2

  • Consider a simple pendulum of length / and mass m placed in a rail-road cart that...

    Consider a simple pendulum of length / and mass m placed in a rail-road cart that has constant acceleration a in the positive x-direction. (Hint: This means that suspension point of the pendulum moves with acceleration a, this needs to be accounted for when considering motion of the pendulum) a) (11 pts.) Find the Lagrangian function of this pendulum. b) (11 pts.) Obtain Lagrange's equations of motion for this pendulum. c) (11 pts.) Find the Hamiltonian function of this pendulum....

  • Q 4. (a) A body of mass m is moving in two dimensions in a constant...

    Q 4. (a) A body of mass m is moving in two dimensions in a constant z plane. Consider a coordinate system that rotates with constant angular speed 1 about the z-axis. In a fixed coordinate system (in the constant z plane), define the plane polar coordinates (r,0) while defining (r, ) as the corresponding plane polar coordinates in the rotating system. (i) In terms of the coordinate system rotating with constant angular speed 1, write down the kinetic energy...

  • Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless...

    Question 3 3. Consider a plane pendulum consisting of a mass m suspended by a massless string of length I. Suppose that that time t-0 the pendulum is put into motion and the length of the string is shortened at a constant rate ot-a (ie. L(t)= Lo-at). Use the angle of the pendulum φ as your generalized coordinate. (a) (2 points) Obtain the Lagrangian and Hamiltonian for this system (b) (0.5 points) Is H conserved? How can you tell? (c)...

  • A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at...

    A) Write the Lagrangian for a simple pendulum consisting of a point mass m suspended at the end of a massless string of length l. Derive the equation of motion from the Euler-Lagrange equation, and solve for the motion in the small angle approximation. B) Assume the massless string can stretch with a restoring force F = -k (r-r0), where r0 is the unstretched length. Write the new Lagrangian and find the equations of motion. C) Can you re-write the...

  • 4. Consider a double pendulum with identical length, L and mass, m constrained to move in...

    4. Consider a double pendulum with identical length, L and mass, m constrained to move in the x-y plane. Using the Cartesian coordinates, x and y write down the kinetic and potential energies of the system in terms of, and θ2. Find the Lagrangian and two corresponding equations for the system. Assume the angles 0, and 02 are both very small so that sin θ θ and cos θ 1 and state the approximate equations

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT