Question

A sphere of mass m and radius r rolls without slipping inside a curve surface of radius R. Knowing that the sphere is release
0 0
Add a comment Improve this question Transcribed image text
Answer #1

R. Rcoup B А d R JD B B v=wr from h=R-RCOSB = R(I-COSB) A to B , PoE converted into kot ngh y my my2+ y To 2 for solid I 21 mt my2 vectical/ Normal reaction at instrosit (B) my N-ng amoboro R R mgt ring fe= Centrepetal måt 1098 (l-case ose)) force me

Add a comment
Know the answer?
Add Answer to:
A sphere of mass m and radius r rolls without slipping inside a curve surface of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (11 points) A uniform solid sphere of mass m and radius r is placed inside a...

    (11 points) A uniform solid sphere of mass m and radius r is placed inside a hemispherical bowl of radius R. The sphere is released from rest at an angle theta and rolls without slipping. (a) (6 points) Using Conservation of Energy, to find an expression for the angular speed of the sphere when it reaches the lowest point of the bowl. (b) (6 points) Find the magnitude of the centripetal acceleration of the center of mass of the sphere...

  • A small solid sphere with radius 0.15 cm and mass 0.15 g rolls without slipping on...

    A small solid sphere with radius 0.15 cm and mass 0.15 g rolls without slipping on the inside of a large fixed hemisphere with radius 0.10 m and a vertical axis of symmetry. The sphere starts at the top from rest. (a) What is its kinetic energy at the bottom? (b) What fraction of its kinetic energy at the bottom is associated with rotation about an axis through its center of mass? (c) What is the magnitude of the normal...

  • A small solid sphere with radius 0.46 cm and mass 0.56 g rolls without slipping on...

    A small solid sphere with radius 0.46 cm and mass 0.56 g rolls without slipping on the inside of a large fixed hemisphere with radius 0.16 m and a vertical axis of symmetry. The sphere starts at the top from rest. (a) What is its kinetic energy at the bottom? (b) What fraction of its kinetic energy at the bottom is associated with rotation about an axis through its center of mass? (c) What is the magnitude of the normal...

  • A hoop with mass, M, and radius, R, rolls along a level surface without slipping with...

    A hoop with mass, M, and radius, R, rolls along a level surface without slipping with a linear speed, v. What is the ratio of rotational to linear kinetic energy? (For a hoop, I = MR2.)

  • 4) A solid uniform sphere mass M an radius R pivots around its center, which is...

    4) A solid uniform sphere mass M an radius R pivots around its center, which is rigged to. ntal spring of negligible mass and spring constant k. The sphere rolls without slipping along a horizontal surface. The spring is initially stretched an amount Xmax and is released from rest. Derive an expression for period of the sphere's simple harmonic motion, expressed in terms of the above variables

  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

  • A uniform disk of radius r and mass md rolls without slipping on a cylindrical surface...

    A uniform disk of radius r and mass md rolls without slipping on a cylindrical surface and is attached to a uniform slender bar AB of mass mb. The bar is attached to a spring of constant K and can rotate freely in the vertical plane about point A as shown in the figure . If the bar AB is displaced by small angle 0 and released, determine The energy of the system in terms of theta and theta '....

  • A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down...

    A solid sphere of mass 1.5 kg and radius 15 cm rolls without slipping down a 35° incline that is 7.9 m long. Assume it started from rest. The moment of inertia of a sphere is given by I = 2/5MR2. (a) Calculate the linear speed of the sphere when it reaches the bottom of the incline. (b) Determine the angular speed of the sphere at the bottom of the incline.

  • A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow...

    A sphere of mass M and radius R starts at rest and rolls without slipping down an incline and embeds itself in a hollow cube at the bottom that is only 1/5 its mass. If the incline is h tall and the table has a height of D from the floor, at what horizontal distance from the table do the two objects land? The cube/sphere combination leaves the incline moving horizontally.

  • A solid disk (radius R=2.5 cm , mass M =0.35 kg) rolls without slipping down an...

    A solid disk (radius R=2.5 cm , mass M =0.35 kg) rolls without slipping down an 30 degree-incline. If the incline is 4.2 m long and the disk starts from rest, what is the linear velocity of its center of mass at the bottom of the incline (in m/s)?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT