Question

Problem 1) (25 points) Suppose that a second order system has the pole pair of –2 jn and no zeros. (a) Determine the kind of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

S= -d+jit Pole pair at Charalleristis equation : *--*2)[sc..) -0 $+45 +(4+7°) - $$45 +13.87 - 0 comparing it with $498W, S4Peak time (Tp)= I wa T 2.65 To: 1.185 sec (C) T-sansfer function Tess kwo $+ 25W,stwo Steady state state value Ke 10 Tess= 13Tear ansfer function (Tess) kon so ta twist win Tics) 13 x 23.0285 $ + QxLx S +293.0985 Tés) 930.985 5+85+23.09985

Add a comment
Know the answer?
Add Answer to:
Problem 1) (25 points) Suppose that a second order system has the pole pair of –2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation...

    1. Consider a transfer function of a system 25 s? + 4s + 25 a) Simulation i. Using any simulation software package, plot the poles on the s-plane. ii. Using unit step input, plot the transient response when there is no additional third pole to the system. iii. Using unit step input, plot the transient response when there is an additional third pole occur at -200, -20, -10, and -2. Plot them in a single graph. Normalize all the plots...

  • Design a controller for the transfer function)5)(1(1)(++=sssGto obtain (i) zero steady-stateerror due to step, (ii) a...

    Design a controller for the transfer function)5)(1(1)(++=sssGto obtain (i) zero steady-stateerror due to step, (ii) a settling time of less than 2 s, and (iii) an undamped natural frequency of 5 rad/s. Obtain the response due to a unit step and find the percentage overshoot, the time to the first peak and steady-state error percent due to a ramp input

  • Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Us...

    Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Using Matlab: a) Plot the step response of the open loop system and note the settling time and steady state 15 pts error. b) Add proportional control K 300 and simulate the step response of the closed loop 15 pts system. Note the settling time, %OS and steady state error. c) Add proportional derivate control Kp 300, Ko 10 and...

  • a) True or false b) c) If a second order system has a settling time of...

    a) True or false b) c) If a second order system has a settling time of 7 seconds, and a peak time of 3 seconds we may say that the system is stable. A system with a closed-loop transfer function of the form: 10(s + 7) T(S) (s + 10)(s + 20) has a(n) response. la réponse correcte n'est pas répertoriée | the correct answer is not listed critiquement amortie critically damped O non amortie | undamped sous-amortie | inderdamped...

  • Problem 4. Consider the control system shown below with plant G(s) that has time con- stants...

    Problem 4. Consider the control system shown below with plant G(s) that has time con- stants T1 = 2, T2 = 10, and gain k = 0.1. 4 673 +1679+1) (1.) Sketch the pole-zero plot for G(s). Is one of the poles more dominant? Using MATLAB, simulate the step response of the plant itself, along with G1(s) and G2(s) as defined by Gl(s) = and G2(s) = sti + 1 ST2+1 (2.) Design a proportional gain C(s) = K so...

  • 2- The following requirements are given for a second-order system that is described by the transfer...

    2- The following requirements are given for a second-order system that is described by the transfer function s2+25Wnstwa Maximum overshoot: 5% <P.0.< 15% Settling time: 5s < 75% < 10s Peak time: tp < 2s (a) Describe and sketch the s-plane regions of the pole locations satisfying the requirements. (20pts) (b)Determine the largest and smallest possible peak time of a system with the poles satisfying the requirements. (10pts) Hints: Im(s) cos =-5 10, vi Res P.O.=100e 1-3 16 wn, tp

  • Problem 1: (20 points) Assume that a standard unity feedback system has the open- loop plant...

    Problem 1: (20 points) Assume that a standard unity feedback system has the open- loop plant transfer function: G(S) s(s+3)(s +6) Use Root Locus Methods to design an analog compensator to meet the following specifications: • The step response settling time is less than 5 seconds. • The step response overshoot is less than 17%. • The steady-state error to a unit-ramp input is less than 10%.

  • 1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the...

    1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the closed loop transfer function TF(s) γ(s) R(s) What are the poles and zeros of TF1(s)? [2 marks] b) For TF(s), calculate the DC gain, natural frequency and damping ratio. Classify TF1(s) as underdamped overdamped, critically damped or undamped [3 marks] c) Use the initial value theorem and final value theorem to determine the initial value (Mo) and final value (M) of the [2 marks]...

  • Question three The figure below shows a unit step response of a second order system. From...

    Question three The figure below shows a unit step response of a second order system. From the graph of response find: 1- The rise timet, 2- The peak timet, 3- The maximum overshoot Mp 4- The damped natural frequency w 5. The transfer function. Hence find the damping ratio ζ and the natural frequency ah-Find also the transfer function of the system. r 4 02 15 25 35 45 Question Four For the control system shown in the figure below,...

  • A second order system has the following poles -1.4 t 7.2 j , find the 2%...

    A second order system has the following poles -1.4 t 7.2 j , find the 2% settling time. A second order system has the following poles -1.3 t 5 , if the steady state value is 26 find the peak value. The unit step response of a second order system is given by: y 1.5- 2.1 eWnt sin( 4 t + ¢) find the rise time. A second order system has the following poles -1.3 t 5 j , if...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT