Question

11. Which of the following hypothetical populations is in Hardy-Weinberg equilibrium at the A locus? In each case, population

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer :) option E

According to Hardy Weinberg's principle, the sum of all genotype frequencies for a single locus should be one. In all populations, the addition of the number of individuals is 100 that is the same as the given population size (100). Therefore, genotype frequencies are cumulatively 1.

For example, Population 1:

Genotype frequency of AA, p2 = 36/100

Genotype frequency of AA = 0.36

Genotype frequency of Aa, 2pq = 48/100

Genotype frequency of Aa = 0.48

Genotype frequency of aa, q2 = 16/100

Genotype frequency of aa = 0.16

According to the Hardy Weinberg principle,

p2 + 2pq+ q2 = 1

0.36 + 0.48+ 0.16 = 1

That would be the same for all other populations because the population size of all populations is the same as 100.

Therefore, option E is correct.

PLEASE RATE THE ANSWER

Add a comment
Know the answer?
Add Answer to:
11. Which of the following hypothetical populations is in Hardy-Weinberg equilibrium at the A locus? In...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a. Which of the following two large populations is in Hardy-Weinberg Equilibrium with respect to the...

    a. Which of the following two large populations is in Hardy-Weinberg Equilibrium with respect to the A locus? Genotype frequencies AA Aa aa Population I .430 .481 .089 Population II .640 .320 .040 b. What are the expected equilibrium frequencies for the population that is not in equilibrium? c. How long will it take for the non-equilibrium population to reach equilibrium under conditions of random mating and assuming no selection at this locus?

  • reting Data: Hardy-Weinberg Equation 2 of 10 you use the Hardy Weinberg equation to answer questions...

    reting Data: Hardy-Weinberg Equation 2 of 10 you use the Hardy Weinberg equation to answer questions about a hypotheticalcat population Part A A hypothetical population of 500 cats has two wees, Tandt for a gene that codes for tail length (Tis completely dominantot) The table below presents the phenotype of cats with each possible genotype, as well as the number of individuals in the population with each genotype. Assume that this population is in Hardy-Weinberg equilibrium Recall that the Hardy...

  • Is the population in Hardy Weinberg Equilibrium? Show your work.

    Generation 1: p=0.6, q=0.4; population mean fitness =0.9 Generation 2: p'=0.54, q'=0.46 The genotype frequency in the first generation is: AA: 0.3 Aa: 0.5 aa: 0.2 Is the population in Hardy Weinberg Equilibrium? Show your work.  

  • Consider a sample of 100 individuals sampled from a population in Hardy-Weinberg equilibrium that are genotyped...

    Consider a sample of 100 individuals sampled from a population in Hardy-Weinberg equilibrium that are genotyped at a single locus. Of these 100 individuals, 25 individuals are A 1 A1 homozygotes, 45 are A 1 A 2 heterozygotes, and 30 are A 2 A 2 homozygotes. List the observed and expected genotypic frequencies of this locus in this sample. T TTArial 3 (12pt) T-

  • Evolution 1. Assume this population is in Hardy-Weinberg equilibrium. In a population of 120 cats, 35...

    Evolution 1. Assume this population is in Hardy-Weinberg equilibrium. In a population of 120 cats, 35 are black. Black cats have the bb genotype. Find the allelic frequency of the dominant and recessive allele. 2. Assume this population is in Hardy-Weinberg equilibrium. A litter of 10 puppies has both tipped ears (a) and floppy ears (A). If 4 puppies have tipped ears in the litter. What is the frequency of the recessive allele? 3. Assume this population is in Hardy-Weinberg...

  • 2. Hardy-Weinberg Equilibrium; chi-square test Sickle cell anemia is a recessive disorder caused by a recessive...

    2. Hardy-Weinberg Equilibrium; chi-square test Sickle cell anemia is a recessive disorder caused by a recessive mutation (S) in the b-hemoglobin gene. 80% of affected SS individuals die before reproducing.   Heterozygotes (AS) and homozygous dominant (AA) individuals do not have sickle cell anemia. The table below shows the number of people of each genotype in a population of 100 people in population of Cameroon. Observed # individuals in a Cameroon population AA AS SS 62 32 6 What are the...

  • 4. The Hardy-Weinberg Principle. For a single locus, if the frequency of one allele (allele A)...

    4. The Hardy-Weinberg Principle. For a single locus, if the frequency of one allele (allele A) is 0.4, the frequency of the other allele (allele B) is 0.6, what are the expected frequencies of the AA genotype, the AB genotype and the BB genotype in the next generation? What are the eight assumptions that should be met when making the genotype frequency predictions? How do the eight assumptions serve to form a null model for evolution? Finally, how does one...

  • Consider a locus of interest that has two alleles: A and a. A diploid individual carrying...

    Consider a locus of interest that has two alleles: A and a. A diploid individual carrying these alleles can have one of three genotypes: AA, Aa, or aa; a population will consist of some combination of AA, Aa, and aa individuals. The relatively frequency of each of these genotypes makes up the population's structure. Hardy and Weinberg independently figured out that, in the absence of forces that cause evolutionary change, the population structure will 'settle' or default to equilibrium values,...

  • Which of the following is NOT true regarding Hardy-Weinberg equilibrium (HWE)?

    Question 1 Which of the following is NOT true regarding Hardy-Weinberg equilibrium (HWE)? Most real species will not be at HWE at all loci within their genome If a locus has genotype frequencies consistent with HWE, then the species as a whole is not evolving If a locus has genotype frequencies consistent with HWE, then no evolution is occurring at that locus If a locus does NOT have genotype frequencies consistent with HWE, then some form of evolution is occurring at that locus Question 2 Which of...

  • please click on the photo to see all of it The basic equations of Hardy-Weinberg Equilibrium...

    please click on the photo to see all of it The basic equations of Hardy-Weinberg Equilibrium p² + 2pq + q2 = 1 p+q=1 p= frequency of the dominant allele in the population 9 = frequency of the recessive allele in the population př= percentage of homozygous dominant individuals q* = percentage of homozygous recessive individuals 2pq - percentage of heterozygous individuals 1. You have sampled a population in which you know that the percentage of the homozygous recessive genotype...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT