Question

Q3 (LSM2). An LTI system has a unit-step response of s(t) = (1 – e-t-1))u(t – 1). What is the output y(t) of the system in re

0 0
Add a comment Improve this question Transcribed image text
Answer #1

НmsugЛ- for rct) = Uit) yet) = 1l-e -(t-1) j U17-1) Y(S) = Yes= yoz és [statio Y(S) = ēs . S(5+) his) = Y(S) - XCS) 5(5+1) )

Add a comment
Know the answer?
Add Answer to:
Q3 (LSM2). An LTI system has a unit-step response of s(t) = (1 – e-t-1))u(t –...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an LTI system with the impulse response h(t) = e- . Is the system casual?...

    Consider an LTI system with the impulse response h(t) = e- . Is the system casual? Explain. Find and plot the output s(t) given that the system input is x(t) = u(t). Note that s(t) in this case is commonly known as the step response of the system. If the input is x(t) = u(t)-u(t-T). Express the output y(t) as a function of s(t). Also, explicitly write the output y(t) as a function of t. a) b) c)

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • QUESTION 2 (12 marks) The step response of an LTI system is given by g(t) =...

    QUESTION 2 (12 marks) The step response of an LTI system is given by g(t) = (1 - e-3t)u(t) (a) Determine the impulse response, h(t), of the system. (b) Use the linearity and time invariance properties to determine the response of the system to the input x(t) = 38(t) + 2u(t – 2). (c) Determine the frequency response of the system H(jw). [Hint: Use the tables in the formula sheet]. (d) Hence determine the output y(t) for the input signal...

  • The unit impulse response and the input to an LTI system are given by: h(t) u(t)...

    The unit impulse response and the input to an LTI system are given by: h(t) u(t) - u(t - 4) x(t) e2[u(t)-u(t - 4)] x(t) 1 y(t) h(t) 1. Determine the output signal, i.e.y(t), you may use any method. 2. Is this system memoryless? Why? 3. Is this system causal? Why? 4. Is this system BIBO stable? Why?

  • Problem 3. Consider an LTIC system S. whose response to the unit-step function u(t) is as...

    Problem 3. Consider an LTIC system S. whose response to the unit-step function u(t) is as follows Slu(t)] Moreover, let the following input signal (t) go through the same LTIC system: r(t) 3 -2 1 Can you sketch/compute the output y(t) of the LTIC system S] to the input r(t) without using the impulse-response function h(t) of the system? Justify your answer!

  • 1. An LTI system has the transfer function (or frequency response) H(u)- a) What is the...

    1. An LTI system has the transfer function (or frequency response) H(u)- a) What is the magnitude of H()? b) What is the phase of H(u)? c) Determine the impulse response of this system. d) Find the differential equation between the input and output of this system. e) What is the output of the system to the input x()c

  • Please love from a to e, thanks 3.19. An LTI system has the impulse response h(t)...

    Please love from a to e, thanks 3.19. An LTI system has the impulse response h(t) = e'ul-t). (a) Determine whether this system is causal. (b) Determine whether this system is stable. (c) Find and sketch the system response to the unit step input x(t) = u(t). (d) Repeat Parts (a), (b), and (c) for h(t) = e'u(t). (e) Determine whether the systems given before part (a) and in part (d) are memoryless

  • need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as...

    need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as following h(t) 6u(t) where u(t) is unit step function. The output(Y (s)) is expressed as the product of input (R(s)) and transfer function Y(s) = R(s)H(s) The Laplace transform is defined as LTI system R(H) Y (s) Figure 1: LTI system in s-plane (a) (5 points) Find the tranisfer function(H(s)) of the LITI system. (b) (5 points) Find the Laplace transform of the input(r(t)....

  • 4. LTI Systems and Erponential Response. (12 pts) (a) (2 pts) Suppose an LTI system has...

    4. LTI Systems and Erponential Response. (12 pts) (a) (2 pts) Suppose an LTI system has input-output relationship y(t) 2r(t+3). What is the transfer function H(jw) of the given system. Show that H(jw)2. Hint: H(jw(tejdt (b) (5 pts) Suppose an LTI system has input-output relationship y(t)2r(t+3) as Problem 4-(a). Find the output y(t) using the complex exponential response method as discussed in lecture for the input r(t) = ej2t + 2 cos2(t). Hint: cos2(0) 1 (20 cos(26) an d 1-ejot...

  • Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of...

    Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of the system is r(t), find the system equation which relates the input to the output y(t) 4. (20 points) If a causal signal's s-domain representation is given as X (s) = (s+ 2)(s2 +2s + 5) (a) find all the poles and zero of the function. 2 1 52243 orr

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT