Question


A block is initially at the top of a 2-m tall incline of 30°. The coefficient of kinetic friction between the block and plane
0 0
Add a comment Improve this question Transcribed image text
Answer #1

4 s= 2m Boo mgsingola ig fin 308 mg cos30° tan 30° 7 so block will slode down .. Na mg cos30_ fa MN = 0.2 mg cosso acceleratiها ، کة + V2 عتقدهعه 30دثه3 +02 - 2لاد و ( ده - كووول عاد = 3:58 )

Add a comment
Know the answer?
Add Answer to:
A block is initially at the top of a 2-m tall incline of 30°. The coefficient...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass M = 4.000 kg is released from rest at the top of...

    A block of mass M = 4.000 kg is released from rest at the top of an incline of angle θ = 24.0º w.r.t. the horizontal. The coefficient of kinetic friction between the block and the incline is µk = 0.200 and the length of the incline (hypothenuse of the triangle shown below) is L = 6.00 m. ( w.r.t. = with respect to) I am trying to find: a. The work done by the normal force for the complete...

  • The length of the A 2 kg block is released from rest at the top of...

    The length of the A 2 kg block is released from rest at the top of a rough 40° inclined plane incline is 10 m. As the block slides down the incline, its acceleration is 3.0 m/s incline 1s 10 m. incline. Draw the free body diagram. a) Determine the magnitude of the force of friction acting on the bloc b) W hat is the speed of the block when it reaches the bottom of the inclined plane?

  • A block of mass m-5kg is released from rest at the top of an incline which...

    A block of mass m-5kg is released from rest at the top of an incline which makes an angle 0= 30° with the horizontal. The coefficient of sliding friction between the block and the plane is P02 d 2 m 0.2. 2m down the incline: After the block has traveled d m5 kg a) How much work has gravity has done on the block? 8 30 b) How much work has the Normal Force has done on the block? c)...

  • A block of mass m is initially at rest at the top of an inclined plane, which has a height of 5.6 m and makes an angle of θ = 21° with respect to the horizontal

    A block of mass m is initially at rest at the top of an inclined plane, which has a height of 5.6 m and makes an angle of θ = 21° with respect to the horizontal. After being released, it is observed to be traveling at v = 0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane is μp = 0.1, and the coefficient...

  • ​A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s.

    A 3.70-kg block starts from rest at the top of a 30.09 incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.90 m.

  • A block is released from rest at the top of an inclined 6.20 m long. The...

    A block is released from rest at the top of an inclined 6.20 m long. The angle of the incline with respect to the horizontal direction is and the coefficient of kinetic friction between the block and the surfaces (incline and horizontal) is . The block slides along the incline with constant velocity and continues moving along the horizontal surface until it comes to rest. Using the work-energy theorem, Determine: a) The speed reached by the block at the bottom...

  • A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.90-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 2.10 m.

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 2.10-kg block starts from rest at the top of a 30.0° incline and slides a distance of 2.10 m down the incline in 1.00 s. (a) Find the magnitude of the acceleration of the block. m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. magnitude N direction ---Select--- up the incline down the incline normal to the incline and upward normal to the incline and downward (d)...

  • A 5 kg block is on a 52◦ inclined plane, where the coefficient of kinetic friction...

    A 5 kg block is on a 52◦ inclined plane, where the coefficient of kinetic friction is µk = 0.46. A force of 30 N is applied along an axis parallel to the incline, as shown in the figure. The block is initially moving up the incline at 3 m/s. a) Draw a free-body diagram for the block. b) What is the acceleration of the block? c) How far does the block travel before it reaches its highest point? d)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT