Question

The tension in a nylon monofilament fixed at both ends is 17.0 N. The mass per...

The tension in a nylon monofilament fixed at both ends is 17.0 N. The mass per unit length is 5.00 ✕ 10−3 kg/m, and its length is 41.0 cm.

(a) What is the fundamental frequency (in Hz)?

(b) What are the next three frequencies (in Hz) that could result in standing wave patterns? List them smallest to largest.

second harmonic (Hz)=

third harmonic (Hz)=

fourth harmonic (Hz)=

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
The tension in a nylon monofilament fixed at both ends is 17.0 N. The mass per...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m....

    algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m. If the length of the string between two fixed ends is 54.6 cm, what tension is needed for fundamental frequency of middle C (261.6 Hz)? a. What is the wavelength of the fundamental mode? b. What is the speed of the waves on the string? c. What tension is needed for the fundamental frequency? 2. Sketch the waveform of the third harmonic for a...

  • A rope is fixed at both ends and under a tension of 100 N (where N...

    A rope is fixed at both ends and under a tension of 100 N (where N is the symbol for newton, transverse displacement of the rope, in metres, is given by y = (0.5) sin ( x) cos | 4 1 + 100) t where x is distance along the rope in metres, x = 0 at one end of the rope, t is time in seconds, and N 17 (a) What are (i) the length of the rope, (ii...

  • A string is fixed at both ends. The mass of the string is 0.0010 kg and...

    A string is fixed at both ends. The mass of the string is 0.0010 kg and the length is 2.4 m. The string is under a tension of 210 N. The string is driven by a variable frequency source to produce standing waves on the string. Find the wavelengths and frequencies of the first four modes of standing waves. Express all wavelengths rounded to two decimal places and all frequencies rounded to one decimal place. λ1=____ m λ2=___ m λ3=_____...

  • A taut string is under a tension of 40.0 N and a standing wave is generated...

    A taut string is under a tension of 40.0 N and a standing wave is generated on it whose oscillation amplitude 5.0 cm with a frequency of 60 Hz. The liner mass density of the wire is 5.00 g. a) What is the velocity of propagation of the wave on the string? b) we observe the third harmonic, what is the length of the string? Draw the figure. c) What is angular fluency and wave number?

  • -. A metal wire is 0.400 m long and is under a Tension force of 75.0N....

    -. A metal wire is 0.400 m long and is under a Tension force of 75.0N. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • The standing wave is formed in a string with two fixed ends. The mass of the...

    The standing wave is formed in a string with two fixed ends. The mass of the string is 20.0 g and a length of 8.0 m. The tension in the string is 40.0 N. Determine the positions of the nodes and antinodes for the third harmonic. nodes: antinodes: What is the vibration frequency for this harmonic?

  • 4. A metal wire is 0.400 m long and is under a Tension force of 75.ON....

    4. A metal wire is 0.400 m long and is under a Tension force of 75.ON. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • The standing wave is formed in a string with two fixed ends. The mass of the...

    The standing wave is formed in a string with two fixed ends. The mass of the string is 20.0 g and a length of 8.0 m. The tension in the string is 40.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. nodes: antinodes: (b) What is the vibration frequency for this harmonic?

  • A string fixed at both ends has successive resonances with wavelengths of 0.55 m for the...

    A string fixed at both ends has successive resonances with wavelengths of 0.55 m for the nth harmonic and 0.53 m for the (n + 1)th harmonic. (a) What are the following values? nth harmonic (n + 1)th harmonic (b) What is the length of the string? m Use the fact that the resonance frequencies are multiples of the fundamental frequency and are expressible in terms of the speed of the waves and their wavelengths to find the harmonic numbers....

  • A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of...

    A string with a mass density of 4.5 ✕ 10-3 kg/m is under a tension of 400 N and is fixed at both ends. One of its resonance frequencies is 195 Hz. The next higher resonance frequency is 260 Hz. (a) What is the fundamental frequency of this string? Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 195 Hz 260 Hz (c) What is the length of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT