Question

Figure 4.71The figure below shows an object of mass m1 = 1.0 kg on an inclined surface. The angle of the inclined surface is θ = 30° with the horizontal. The object m1 is connected to a second object of mass m2 = 2.5 kg on a horizontal surface below an overhang that is formed by the inclined surface. Further, an external force of magnitude Fext = 10 N is exerted on the object with mass m1. We observe both objects accelerate. Assuming the surfaces and the pulley are frictionless, and the pulley and the connecting string are massless, what is the tension in the string connecting the two objects?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let the tension in the string = T
Now, Using Newton 2nd Law of Motion -

Fext - m1*g*sin(30) - T = m1*a
10 - 1.0*9.8*sin(30) - T = 1.0*a ----------1

For Block on Horizontal Surface
T = m2*a
T =2.5*a

Equating the value of T in eq 1

a = (Fext-m1 g sin30)/(m1+m2)
10 - 1.0*9.8*sin(30) /(1+2.5)
Solving for a
a = 1.45 m/s^2

Tension in the string, T = 2.5*1.45
Tension in the string, T = 3.625 N

Add a comment
Know the answer?
Add Answer to:
The figure below shows an object of mass m1 = 1.0 kg on an inclined surface....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure below, a tin of antioxidants (m1 = 0.9 kg) on a frictionless inclined...

    In the figure below, a tin of antioxidants (m1 = 0.9 kg) on a frictionless inclined surface is connected to a tin of corned beef (m2 = 2.3 kg). The pulley is massless and frictionless. An upward force of magnitude F = 6.3 N acts on the corned beef tin, which has a downward acceleration of 6.0 m/s2.What are the tension in the connecting cord and angle ?? magnitude 1 N angle 2

  • 00-64 Figure 5-56 shows a box of mass m2 = 1.0 kg on a friction- less...

    00-64 Figure 5-56 shows a box of mass m2 = 1.0 kg on a friction- less plane inclined at angle θ= 30°. It is connected by a cord of negligible mass to a box of mass m 3.0 kg on a horizontal fric- tionless surface. The pulley is frictionless and massless. (a) If the magnitude of horizontal force F is 2.3 N, what is the tension in the connecting cord? (b) What is the largest value the magnitude of F...

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A glider of mass m1=12 kg on a frictionless horizontal track is connected to an object...

    A glider of mass m1=12 kg on a frictionless horizontal track is connected to an object of mass m2=5 kg by a massless string. The glider accelerates to the right, the object accelerates downward, and the string rotates the pulley(with mass m=1.6 kg and radius R). 1.Determine the acceleration of the mass 1. 2.Determine the acceleration of the mass 2.3. Determine angular acceleration of the pulley. 4.Determine the tension T1 in the horizontal part of the string 5. Determine the...

  • A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle...

    A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle θ = 30° is connected by a cord over a massless frictionless pulley to a second block of mass m2 = 2.3 Kg. ​a) What is the magnitude of the acceleration of each block?    b) What is the Tension of the cord? c) What is the Normal force?

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • 6. A mass m1 = 3.00 kg is connected by a light string that passes over...

    6. A mass m1 = 3.00 kg is connected by a light string that passes over a pulley of mass m3 = 9.0 kg to a mass m2 = 9.50 kg sliding on a frictionless inclined surface that makes an angle of 33 with the horizontal (see figure). The coefficient of kinetic friction between the mass m, and the horizontal surface is 0.21. There is no slippage between the string and the pulley. What is the magnitude of the tension...

  • A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light...

    A m1 = 1.25-kg mass is connected to a m2 = 6.90-kg mass by a light string that passes over a massless and frictionless pulley as shown. The coefficient of kinetic friction between m1 and the horizontal plane is μk = 0.42. The coefficient of kinetic friction between m2 and the θ = 34.5° incline is μk = 0.35. br /> Find the tension in the string in N.

  • The figure below shows a box of dirty money (mass m1 = 5.5 kg) on a...

    The figure below shows a box of dirty money (mass m1 = 5.5 kg) on a frictionless plane inclined at angle θ1 = 35°. The box is connected via a cord of negligible mass to a box of laundered money (mass m2 = 2.0 kg) on a frictionless plane inclined at angle θ2 = 55°. The pulley is frictionless and has negligible mass. What is the tension in the cord?

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT