Question

Problem 3 (50%) The process below is part of a larger steam power plant. Steam in stream 1 enters the turbine at 600 °C, 50 bar with mass flow rate kg/s and exits at 7 bar, 350 °C. Stream 3, which is saturated liquid and is throttled to 2 bar (stream 4). Stream 5 is at 200°C, 2 bar, and is mixed adiabatically with stream 4 in the tank. Stream 6 is wet steam that contains 8% liquid. This stream is cooled in heat exchanger 2 and exits as saturated liquid (stream 7). The efficiency of the pump is 85% a) Fill out the table below with the properties of all streams. Indicate the phase as s/h V (superheated vapor), c/L (compressed liquid) and if the state is a vapor/liquid mixture, indicate the mass fraction of the liquid. b) Calculate the efficiency of the turbine. c) Calculate the absolute amount of heat that is exchanged between the hot and cold streams in heat ex changer l d) Calculate the heat in heat exchanger 2. e) Calculate the work in the pump Summarize your results in the table below but you must show your work to receive credit. heat exchnager 2 pummp (kg/s) T (C) P (bar) H (kJ/kg) S (kJ/kg K) phase Turbine efficiency Heat in heat exchanger 1 (kJ/s) Heat in heat exchanger 2 (kJ/s) Work in pump (kJ/s)
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 3 (50%) The process below is part of a larger steam power plant. Steam in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • 3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below,...

    3. (40 pts) A steam power plant based on the Rankine cycle, shown in the below, operates to develop net cycle power. Saturated vapor at 8 bar enters the turbine where it expands to the condenser pressure of 1 bar. Water liquid exits the condenser 30 °C and 1 bar and it is pumped to the boiler pressure of 8 bar. Isentropic efficiencies of the turbine and pump are 80% and 60%. Assume kinetic and potential energies are negligible at...

  • The figure shows a schematic of a power plant that has two steam turbines. The water...

    The figure shows a schematic of a power plant that has two steam turbines. The water (the working fluid for the plant) leaves the high pressure turbine (HPT) as saturated vapour at 1000 [kPa]. Part of this flow is diverted to an insulated heat exchanger, which we hot airstream to create superheated steam that enters the low pressure turbine (LPT). The air mas flow rate is 19.5 k/s and the air temperature drops from 1100 to 6001 as it goes...

  • The figure shows a schematic of a power plant that has two steam turbines. The water...

    The figure shows a schematic of a power plant that has two steam turbines. The water (the working fluid for the plant) leaves the high pressure turbine (HPT) as saturated vapour at 1000 [kPa]. Part of this flow is diverted to an insulated heat exchanger, which uses a hot air stream to create superheated steam that enters the low pressure turbine (LPT). The air mass flow rate is me=19.5 kg/s) and the air temperature drops from 1100 to 600°Cas it...

  • Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure...

    Superheated steam at 20 MPa, 560oC enters the turbine of a vapor power plant. The pressure at the exit of the turbine is 0.7 bar, and liquid leaves the condenser at 0.4 bar at 75oC. The pressure is increased to 20.1 MPa across the pump and the specific enthalpy is 338.14 kJ/kg. The turbine isentropic efficiency is 81%. Cooling water enters the condenser at 20oC with a mass flow rate of 70.7 kg/s and exits the condenser at 38oC. For...

  • A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C...

    A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C and 5.0 bars enters the outer (annular) pipe, flowing counter-currently to the ethane, and exits as a saturated vapor at the same pressure. Neglecting the heat losses from the heat exchanger to its surroundings. Draw a diagram of the process. (5) What are the...

  • 3-40 In the condenser of a steam power plant the steam from the turbine enters the...

    3-40 In the condenser of a steam power plant the steam from the turbine enters the condenser at 0.10 bar with a quality of 95 percent and leaves at the same pressure as a saturated liquid. The steam is condensed by transferring heat to a stream of cooling water which enters at 1.3 bars and 5°C and leaves the heat exchanger at 1.2 bars and 25°C·The environmental temperature is 5°C. Determine a. the change in stream availability (exergy) of the...

  • Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated...

    Problem 4 In the vapor power cycle shown below, steam (H20) is the working fluid. Saturated vapor enters the turbine at 100 bar and saturated liquid exits the condenser at a pressure of 0.1 bar. The net power output of the cycle, Weycle, is 150 MW. Isentropic efficiency of the turbine and the pump (n (hi-h2)/(h1-h2s), np=(h25-h1)/(h2-h1)) are both 80%. Determine the followings. [30 pts] (a) Thermal efficiency, n (b) Mass flow rate of the steam, m, in kg/s (c)...

  • In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat...

    In Geothermal-steam power cycle, the source of heat is the hot water from well. The heat exchanger receive hot water at Tg1= 105 oC and the water leaves at 40 oC as shown in Figure 3. Steam exits the boiler at 40 bar, 300 oC, and it exits the turbine at 1 bar. Saturated liquid water exits the condenser at 1 bar. The plant operate to generate 20 MW electric power with generator efficiency of 0.95. The isentropic efficiency of...

  • Problem 2: (50 points) Steam is the work Saturated vapor enters the turbine at (50 points)...

    Problem 2: (50 points) Steam is the work Saturated vapor enters the turbine at (50 points) Steam is the working fluid in an ideal Rankine cycle. ated vapor enters the turbine at BO MPa and saturated liquid exits the ser at a pressure of 0.006 MPa. The not power output of the cycle is 500 MW.Also he = 1812.2 kJ/kg and he 157.56 kJ/kg a. Thermal Efficiency (30 points) b. Mass flow rate in kg/h (20 points) c. Bonus: Qin...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT