Question

Steel Structures: Design and Behavior (4th Edition) 4th Edition - chapter 8, problem-8.13 ( for the...

Steel Structures: Design and Behavior (4th Edition) 4th Edition - chapter 8, problem-8.13 ( for the first load case)

Select the lightest W14 section, using the ??modified flexure analogy approach, to carry a concentrated load W at mid-span of a 24 ft beam, in addition to the weight of the beam. The ends of the simply supported span are assumed to have torsional simple support. The dead load, WD = 7 kips, the live load, WL = 22 kips, Fy = 50 ksi, and the concentrated load has an eccentricity of e = 2 in from the plane of the web.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giwn data: eccentne Calculate tha ultimate load un 43.6 kips Pu. Pul OM A- Calculate th maximum bauding nomert 4 4-

Area ,A- 26.5 in Depth, d 14-o2 in calculate Hha devsn bunding moment 4 09 M-7125534.95 -in ps-

m 593.79 kíts-fr since, Mov M Hence; the secho-IW14xgoļa

Add a comment
Know the answer?
Add Answer to:
Steel Structures: Design and Behavior (4th Edition) 4th Edition - chapter 8, problem-8.13 ( for the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An A992 beam, simply supported at both ends, spans 20 ft and is loaded at mid-span...

    An A992 beam, simply supported at both ends, spans 20 ft and is loaded at mid-span with a dead load of 8.o kips and live load of 24.0 kips, in addition to its self-weight. Assume full lateral support and a compact section. Select the lightest weight wide-flange members with respect to bending capacity. Does the member selected in part (a), satisfy the live load deflection criteria of L/360.? Does the member selected in part (a), satisfy the live load deflection...

  • Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load...

    Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load (DL) (self-weight included) and 2.47kip/ft live load (LL) on a span length of 18 ft. The beam is limited to be (due to architectural reasons) 10” wide with an overall depth of 20”. Use f’c= 3,000 psi and fy= 40,000psi. Design the longitudinal reinforcement (flexure design) and the web reinforcement (Stirrups).

  • Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load...

    Design a rectangular simple supported beam to carry service loads of 1.05 kips/ft of dead load (DL) (self-weight included) and 2.47kip/ft live load (LL) on a span length of 18 ft. The beam is limited to be (due to architectural reasons) 10” wide with an overall depth of 20”. Use f’c= 3,000 psi and fy=40,000psi. Design the longitudinal reinforcement (flexure design) and the web reinforcement (Stirrups).

  • Please refer AISC 15th edition 2. Select the lightest W shape to carry a uniformly distributed...

    Please refer AISC 15th edition 2. Select the lightest W shape to carry a uniformly distributed dead load of 0.5 kips/ft and a live load of 1.0 kips/ft on a simply supported span of 42 ft. Adequate lateral support is provided. The live load deflection is limited to 360, Use A572 Grade 50 steel and LRFD. (credit weight 30)

  • Please refer AISC 15th edition 2. Select the lightest W shape to carry a uniformly distributed dead load of 0.5 kips...

    Please refer AISC 15th edition 2. Select the lightest W shape to carry a uniformly distributed dead load of 0.5 kips/ft and a live load of 1.0 kips/ft on a simply supported span of 42 ft. Adequate lateral support is provided. The live load deflection is limited to 360, Use A572 Grade 50 steel and LRFD. (credit weight 30)

  • Figure 2 shows a simply supported beam and the cross section at mid span. The beam...

    Figure 2 shows a simply supported beam and the cross section at mid span. The beam supports a uniform service (unfactored) dead load consisting of its own weight plus 1.4 kips/ft and a uniform service (unfactored) live load of 1.5 kips/ft. The concrete strength is 3500 psi, and the yield strength of the reinforcement is 60,000 psi. The concrete is normal-weight concrete. For the midspan section shown in Figure 2, compute фМп and show that it exceeds Mu. WD 1.4...

  • Problem 1 (100 pts) Select the lightest W24 beam section with Fy = 50 ksi using...

    Problem 1 (100 pts) Select the lightest W24 beam section with Fy = 50 ksi using LRFD for the following span and loading. The unbraced length of the compression flange is 30 ft (Lb = 30'). Consider Cb > 1. The given dead load does not include beam weight. Verify that the selected beam has adequate shear strength. Maximum allowable deflection due to live load is L720. Maximum allowable deflection due to total load is L/360. WD = 1.2 k/ft...

  • A simply supported inverted T-beam has a clear span ln = 32 ft and is subjected...

    A simply supported inverted T-beam has a clear span ln = 32 ft and is subjected to its own weight and the point loads P as shown. The point load P consists of a service dead load of 16 kips and a service live load of 28kips. Design #3 vertical stirrups for the beam (ignore any torsional effects). Assume d = 41.5 in., ƒc’ = 4,000 psi, and ƒy = 60,000 psi. 1. A simply supported inverted T-beam has a...

  • Concrete design Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the...

    Concrete design Problem #1: Design a rectangular beam section, i.e. select b, d, h, and the required area of tension steel, A, at mid-span for a 22 ft-span simply supported beam that support its own weight, a superimposed service dead load of 1.25 kip/ft, and a uniform service live load of 2 kip/ft. Start by assuming the self-weight of the beam W-410 lbs/ft, b-0.7d, and use fc4500 psi and fy-60, 000 psi Note: Provide a detailed sketch for the final...

  • COURSE CE 3202 - Design of Concrete Structures SUBJECT HOMEWORK 4 DATE LECTURE # HW 4-2...

    COURSE CE 3202 - Design of Concrete Structures SUBJECT HOMEWORK 4 DATE LECTURE # HW 4-2 A simply supported beam with the cross section shown in Fig. P9-5 has a span of 25 ft and supports an unfactored dead load of 1.5 kips/ft, including its own self-weight plus an unfactored live load of 1.5 kips/ft. The concrete strength is 4500 psi. Compute (a) the immediate dead load deflection. (b) the immediate dead-plus-live-load deflection. 16 No. 8 bars Fig. P9-5

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT