Question

Example: 1.2 A wrench is made of steel (E=210 GPa, v=0.3) with elastic constants of strain components for a state of plane st

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I LUI TO (6) = 1100-2000 - 400 o on = lookpa, og o yoo upe, Iny: 200 hpa ng og ne Principal strey og o digagajati Ingi = 100fDale 4-0.3.? selama CAH2) En = 50x100 Gy = -75x16t, Yay 150 x16 nd E= 210X10 Tipa Weknow that a E Contuty) 1. g. & (ft min) T

Add a comment
Know the answer?
Add Answer to:
Example: 1.2 A wrench is made of steel (E=210 GPa, v=0.3) with elastic constants of strain...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Asap 1. The bracket is made of steel (Young's modulus 200 GPa; Poisson's ratio 0.3). When the force P is applied to the bracket, the gages in the strain rosette at point A have the followi...

    Asap 1. The bracket is made of steel (Young's modulus 200 GPa; Poisson's ratio 0.3). When the force P is applied to the bracket, the gages in the strain rosette at point A have the following readings: E.-60 μ . Ep 135 μ l, and E.-264 μ (a) Determine the shear strain at point A. (b) Determine the orientation of the principal plane, the in-plane principal strains, the maximum in-plane shear strain, and the average in-plane normal strain. Determine the...

  • For the given state of plane stress, calculate the strains on each faces. (E=200 GPa, G=70...

    For the given state of plane stress, calculate the strains on each faces. (E=200 GPa, G=70 GPa, and v=0.3). a) Calculate the principal strains and angle ?? at which it occurs. b) Calculate the maximal shear stress in the plane and angle ?? at which it occurs. (Hint; You can construct Mohr’s Circle for strain transformation with the same rules as we constructed in stress transformation) 80 MPa 40 MPa 50 MPa

  • An existing steel beam is in use in a building.

    An existing steel beam is in use in a building. Using a rectangular strain gauge rosette, the actual strains at point A have been recorded while being subjected to test loads which simulate crowd loading. It is necessary to calculate the principal stresses to check whether the beam is safe for its current purpose (ie: assess whether the stresses determined are less than the maximum permissible stresses) Figure 4: Strain gauge rosette location and recorded strains In this case it is reasonable...

  • The strain rosette shown was used to obtain normal strain data at a point on the free surface of a machine component. Given the values εa= -185 με, εb= -150 με, εc= 55 με, E = 10,800 ksi, and v = 0.33...

    The strain rosette shown was used to obtain normal strain data at a point on the free surface of a machine component. Given the values εa= -185 με, εb= -150 με, εc= 55 με, E = 10,800 ksi, and v = 0.33, determine (a) the stress components σx, σy, and τxy at the point. (b) the principal stresses and the maximum in-plane shear stress at the point; on paper, show these stresses on an appropriate sketch that indicates the orientation...

  • Question 3 (1) Figure Q3(a) shows the stresses at a point in a structure. Using the...

    Question 3 (1) Figure Q3(a) shows the stresses at a point in a structure. Using the Mohr's circle, determine the maximum in-plane shear stress of the point and shown it on a sketch of a properly oriented stress element. 12 marks) 50 MPa 30 MPa 30 MPa Figure Q3(a) (2) The 50-mm-diameter solid shaft shown in Figure Q3(b) is fixed at B and subject to the couple forces at the top through a rigid wrench. Determine the maximum shear stres...

  • Part A - Question 3 (Total Marks for Part A - Question 3:20) A steel beam...

    Part A - Question 3 (Total Marks for Part A - Question 3:20) A steel beam in an industrial structure is part of a complicated frame that was difficult to analyse. Using a rectangular strain gauge rosette, the actual strains at point A have been recorded while being subjected to test loads. It is necessary to determine the normal stresses and shear stresses in the actual beam subject to the test loads to check whether the stresses assumed in the...

  • hello guys can u help me :) Question 1. For each of the plane-stress conditions given...

    hello guys can u help me :) Question 1. For each of the plane-stress conditions given below, using the matrix transformation law, determine the state of stress at the same point for an element rotated in the x-y plane 30° clockwise from its original position: (a) Ox = 200 MPa Oy = 400 MPa Txy = - 60 MPa (b) Ox = 300 MPa Oy = -180 MPa Txy = 320 MPa Question 2 my x2 The state of stress...

  • Figure 4 shows an element experiencing several stress components. Determine the following: 1. The stress components...

    Figure 4 shows an element experiencing several stress components. Determine the following: 1. The stress components Oxvxr. Oysy, and T xuy, acting on the element oriented at a counter clockwise angle = 40° from the horizontal x axis 2. The principal stresses, the maximum shear stress and their associated angles For each of the stress state calculated in parts 1 and 2, show all results on sketches of properly oriented elements. Note: Solutions MUST be obtained using Mohr's circle ONLY....

  • The state of plane stress at a point under the surface of the ANKA airplane wing...

    The state of plane stress at a point under the surface of the ANKA airplane wing is represented on the element oriented as shown in the Figure. Deternine principal Stresses Calculate the maximum in-plane shear stress and associated average normal stress by using the analytical method and Mohr's circle. For each case, determine the corresponding orientation of the element with respect to the element shown and sketch the state of stress on the element. Determine the absolute maximum shear stress...

  • 1) Given the following state of stress at a point in a continu 7 0 14...

    1) Given the following state of stress at a point in a continu 7 0 14 [a] =| 08 01 MPa, 14 04 determine the principal stresses and principal directions 2) Find the principal stresses, maximum in-plane shear stresses, maximum shear stress, and the orientations of the principal stresses for the stress state given below. Comment on the orientations of the maximum in-plane shear stresses 12 9 01 [o9 -12 0 MPa. 0 0 6 2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT