Question

Question 3 (1) Figure Q3(a) shows the stresses at a point in a structure. Using the Mohrs circle, determine the maximum in-p

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Tor auue GU 32. 19-1-1 rtó 3 rad

Add a comment
Know the answer?
Add Answer to:
Question 3 (1) Figure Q3(a) shows the stresses at a point in a structure. Using the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Figure Q3 (a) shows a solid 40 mm diameter steel shaft which is supported by smooth bearings at B and D

     Figure Q3 (a) shows a solid 40 mm diameter steel shaft which is supported by smooth bearings at B and D. It is coupled to a motor at C, which delivers 6 kW of power to the shaft while it is turning at 50 Hz. The modulus of rigidity of steel is 80 GPa. The shaft is free to turn in its support bearings at B and D. If gears A and E consume powers of 2 kW and 4...

  • 3 (15 points) A bent circular cantilever beam of uniform diameter of 25 mm is shown in igure below. The beam is made from a material with elastic modulus is 70 GPa, the tensile strength is 250 M...

    3 (15 points) A bent circular cantilever beam of uniform diameter of 25 mm is shown in igure below. The beam is made from a material with elastic modulus is 70 GPa, the tensile strength is 250 MPa, and the ultimate strength is 300 MPa. 250 mm A. 150 mm z Zz. 50N V (z direction) 100 N (a) (5 points) What are the stresses in the beam at point A? (b) (10 points) Based on your calculations in (a),...

  • Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa...

    Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa tensile and 200 MPa compressive, together with a shear stress of 50 MPa, as shown in the figure below. Use the Mohr's circle to determine: A. The principal stresses and their corresponding principal planes, B. The maximum shear stress and the planes of maximum shear stress, also C. Show the principal stresses calculated above on a sketch of the element D. Determine the state...

  • Section A QA1 At a point on the surface of a metal working lathe, stresses, Os...

    Section A QA1 At a point on the surface of a metal working lathe, stresses, Os Oy and Twy have been calculated as shown in Fig QA1 below. 110 MPa 20 MPa 10 MPa Fig. QA1 (a) Determine the principal stresses and the maximum shear stresses. [4 marks] (b) Illustrate the principal stresses on a properly oriented principal-stress element [4 marks] (c) Illustrate the maximum in-plane shear stresses on a properly oriented element. [4 marks) (d) Construct a Mohr's Stress...

  • Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the p...

    please help me solve this whole mechanical design problem thanks Q3. (30 points) For the state of plane stress shown, Stresses, σ. σ2 (b) the orientation of the principal stresses, s, (c) the maximum in plane shearing stress, Tmar and (d) its orientation, p. (e) the normal stress at the plane of maximum shear stress, (1) sketch of the rotated plane element for the principal stresses and the rotated plane element for maximum shear stress similar to figure 1, below...

  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

  • Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow...

    Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow steel section as shown in Figure Q3. a. Calculate the second moment of area of the section about the horizontal (10 marks) centroidal axis. Calculate the maximum allowable value of the point load Wif the elastic bending (15 marks) b. stress in the beam is to be limited to 250 MPa. c. Calculate the maximum shear stress at q-q in the beam when the...

  • 3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa;...

    3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa; and unknown shear stress, The maximum principal stress was determined to be 104.34 MPa. Using Mohr's cirdle, determine a. the magnitude of the shear stress, b. the principal plane and the minimum principal stress. Then, sketch the element showing all stresses in its proper orientation, c. the maximum shear stress, associated normal stress and the orientation of the element. Then, sketch the element showing...

  • Part A - Question 3 (Total Marks for Part A - Question 3:20) A steel beam...

    Part A - Question 3 (Total Marks for Part A - Question 3:20) A steel beam in an industrial structure is part of a complicated frame that was difficult to analyse. Using a rectangular strain gauge rosette, the actual strains at point A have been recorded while being subjected to test loads. It is necessary to determine the normal stresses and shear stresses in the actual beam subject to the test loads to check whether the stresses assumed in the...

  • Question A-36 steel pipe with an outer diameter of 100 mm and an inner diameter of...

    Question A-36 steel pipe with an outer diameter of 100 mm and an inner diameter of 80 mm subjected to loadings shown in Figure 1. The pipe is rigidly fixed at B and P - 150 kN. Given the yield stress, Oy -250 MPa and factor of safety, F.S. - 1.5 is used against yielding on this entire pipe. (a) For the stress state at the surface, construct the Mohr circle and determine: (1) the total stresses at surface of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT