Question

Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the rest and slides down a 30.0° incline which is 3.60 m high.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg...

    Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg starts from the rest and slides down a 300 incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored Determine the speed of the block with mass m2.70...

  • A block of mass m = 3.00 kg starts from the rest and slides down a...

    A block of mass m = 3.00 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.40 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. (A) Determine the speed of the block with mass m = 3.00 kg after the...

  • A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it s...

    A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline). The collision is elastic, and friction can be ignored. A) Determine the speed of the block with mass m = 3.00 kg after the collision. B) Determine the speed...

  • A block of mass m = 2.26 kg slides down an α = 32.8 ° incline...

    A block of mass m = 2.26 kg slides down an α = 32.8 ° incline which is h = 3.54 m high. At the bottom, it strikes a block of mass M = 7.22 kg which is at rest on a horizontal surface, as seen in figure below. (Assume a smooth transition at the bottom of the incline.) If the collision is elastic, and friction can be ignored, determine the speed of the smaller block after the collision.

  • 1. The block shown in (Figure 1) has mass m = 7.0 kg and lies on...

    1. The block shown in (Figure 1) has mass m = 7.0 kg and lies on a fixed smooth frictionless plane tilted at an angle θ = 24.5 ∘ to the horizontal. a. Determine the acceleration of the block as it slides down the plane. Express your answer to three significant figures and include the appropriate units. b. If the block starts from rest 19.0 m up the plane from its base, what will be the block's speed when it...

  • A block of mass m 2.20 kg slides down an incline which is 3.60 m high....

    A block of mass m 2.20 kg slides down an incline which is 3.60 m high. At the bottom, it strikes block mass M 7.00 kg which at rest on a horizontal surface, as 3.60 m shown (assume a smooth transition to the bottom of the incline). If the collision is elastic, and friction can of mass m 2.20 kg just before its strikes the block be ignored, determine (a) the speed of the block of mass M-7.00 kg. (b)...

  • A sphere of radius r = 34.5 cm and mass m = 1.80 kg starts from...

    A sphere of radius r = 34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long. Part A Calculate its translational speed when it reaches the bottom. Express your answer using three significant figures and include the appropriate units. A Value Units Submit Request Answer Part B Part B Calculate its rotational speed when it reaches the bottom. Express your answer using three significant figures and...

  • Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is...

    Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.00 Kg which is at rest on a horizontal plane. If the collision is elastic and friction can be ignored, determine: The velocities of the two blocs after the collision, How far back up the incline, the smaller mass will go? 3.6 m M 30°

  • Determine the speed of block A when B descends 1.4 m. The assembly consists of two...

    Determine the speed of block A when B descends 1.4 m. The assembly consists of two blocks A and B which have a mass of 25 kg and 30 kg, respectively. The blocks are released from rest. Neglect the mass of the pulleys and cords. (Figure 1) Express your answer to three significant figures and include the appropriate units. UA= 1.76 Pexios Ane Resauest Anawe Submit Incorrect; Try Again; 3 attempts remaining Part B Determine the speed of block B...

  • dynamics Problem 18.39 The spool has a mass of 56 kg and a radius of gyration...

    dynamics Problem 18.39 The spool has a mass of 56 kg and a radius of gyration ko = 0.280 m (Figure 1) Figure 1 of 1 03 m 0.2 m Part A If the 18-kg block A is released from rest, determine the velocity of the block when it descends 0.5 m Express your answer to three significant figures and include the appropriate units. НА ? UA= Value Units Submit Request Answer

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT