Question

A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it s...

A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline). The collision is elastic, and friction can be ignored. A) Determine the speed of the block with mass m = 3.00 kg after the collision. B) Determine the speed of the block with mass M = 7.50 kg after the collision. C) Determine how far back up the incline the smaller mass will go.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

3-6 m 36 32 Sn30Speed of 3 kg block after collision is 3.6 m/s

Speed of 7.5 kg block after collision is 4.8 m/s

The smaller mass go up the incline upto 1.322 m

Add a comment
Know the answer?
Add Answer to:
A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 3.00 kg starts from the rest and slides down a...

    A block of mass m = 3.00 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.40 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. (A) Determine the speed of the block with mass m = 3.00 kg after the...

  • Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is...

    Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.00 Kg which is at rest on a horizontal plane. If the collision is elastic and friction can be ignored, determine: The velocities of the two blocs after the collision, How far back up the incline, the smaller mass will go? 3.6 m M 30°

  • A block of mass m 2.20 kg slides down an incline which is 3.60 m high....

    A block of mass m 2.20 kg slides down an incline which is 3.60 m high. At the bottom, it strikes block mass M 7.00 kg which at rest on a horizontal surface, as 3.60 m shown (assume a smooth transition to the bottom of the incline). If the collision is elastic, and friction can of mass m 2.20 kg just before its strikes the block be ignored, determine (a) the speed of the block of mass M-7.00 kg. (b)...

  • A block of mass m = 2.26 kg slides down an α = 32.8 ° incline...

    A block of mass m = 2.26 kg slides down an α = 32.8 ° incline which is h = 3.54 m high. At the bottom, it strikes a block of mass M = 7.22 kg which is at rest on a horizontal surface, as seen in figure below. (Assume a smooth transition at the bottom of the incline.) If the collision is elastic, and friction can be ignored, determine the speed of the smaller block after the collision.

  • Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the...

    Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the rest and slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Part A Determine the speed of the block with mass...

  • Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg...

    Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg starts from the rest and slides down a 300 incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored Determine the speed of the block with mass m2.70...

  • A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a...

    A 3.60-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.70 m down the incline in 1.40 s. (a) Find the magnitude of the acceleration of the block.m/s2 (b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. (d) Find the speed of the block after it has slid 1.70 m.

  • A block slides down an incline at an angle of 30.0 degrees. At the bottom of...

    A block slides down an incline at an angle of 30.0 degrees. At the bottom of the incline the block is traveling at 1.20 m/s. The coefficient of friction between the block and the incline is 0.25. I need help with A., B., and C. PHY 222 Assignment 1 Name 3. A block slides down an incline at an angle of 30.0°. At the bottom of the incline the block is travelling at 1.20 m/s. The coefficient of friction between...

  • A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides...

    A 3.00-kg block starts from rest at the top of a 30.0 degrees incline and slides a distance of 2.10m down the incline in 1.80 seconds. a) Find the magnitude of the acceleration of the block. (_______ m/s2) b) Find the coefficient of kinetic friction between block and plane. c) Find the friction force acting on the block.        Magnitude ____________N        Direction: ______________ d) Find the speed of the block after it has slid 2.10m. (___________m/s)

  • I really need some help with part a and part b. if you could also explain...

    I really need some help with part a and part b. if you could also explain how you got to the answers that would be greatly appreciated!! thank you! GP-03. A block of mass 2.5 kg slides down a frictionless incline plane from rest as shown in figure below. At the bottom, it strikes another block of mass 7.0 kg, which is initially at rest. (a) find the velocity of the smaller block right after the collision, if the heavier...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT