Question

GP-03. A block of mass 2.5 kg slides down a frictionless incline plane from rest as shown in figure below. At the bottom, it

I really need some help with part a and part b. if you could also explain how you got to the answers that would be greatly appreciated!! thank you!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Energy conservation relocity of m just before collision, Work done by - gravity change in kinetic Energy (vings 939) X3.6 =

Add a comment
Know the answer?
Add Answer to:
I really need some help with part a and part b. if you could also explain...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 3.00 kg starts from the rest and slides down a...

    A block of mass m = 3.00 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.40 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. (A) Determine the speed of the block with mass m = 3.00 kg after the...

  • Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg...

    Phys201-1 Summer2020 <A HW (Part 1)Phys201 Problem 7.79 A block of mass m = 2.70 kg starts from the rest and slides down a 300 incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored Determine the speed of the block with mass m2.70...

  • A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it s...

    A block of mass m = 3.00 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 7.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline). The collision is elastic, and friction can be ignored. A) Determine the speed of the block with mass m = 3.00 kg after the collision. B) Determine the speed...

  • Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is...

    Problem 3: A bloc of mass m 2.20 Kg slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M-7.00 Kg which is at rest on a horizontal plane. If the collision is elastic and friction can be ignored, determine: The velocities of the two blocs after the collision, How far back up the incline, the smaller mass will go? 3.6 m M 30°

  • Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the...

    Problem 7.79 14 of Con A block of mass m = 3.00 kg starts from the rest and slides down a 30.0° incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Part A Determine the speed of the block with mass...

  • I got Part A but need help with Part B thanks! Head-on Collision A blue puck...

    I got Part A but need help with Part B thanks! Head-on Collision A blue puck with a mass of 3.60×10−2  kg , sliding with a velocity of 0.220  m/s North on a frictionless, horizontal air table, makes a perfectly elastic, head-on collision with a red puck with mass m, initially at rest. After the collision, the velocity of the blue puck is 4.0×10−2  m/s North. Part A Find the momentum of the red puck after the collision. Give the horizontal component with...

  • A block of mass m = 2.26 kg slides down an α = 32.8 ° incline...

    A block of mass m = 2.26 kg slides down an α = 32.8 ° incline which is h = 3.54 m high. At the bottom, it strikes a block of mass M = 7.22 kg which is at rest on a horizontal surface, as seen in figure below. (Assume a smooth transition at the bottom of the incline.) If the collision is elastic, and friction can be ignored, determine the speed of the smaller block after the collision.

  • A block of mass m 2.20 kg slides down an incline which is 3.60 m high....

    A block of mass m 2.20 kg slides down an incline which is 3.60 m high. At the bottom, it strikes block mass M 7.00 kg which at rest on a horizontal surface, as 3.60 m shown (assume a smooth transition to the bottom of the incline). If the collision is elastic, and friction can of mass m 2.20 kg just before its strikes the block be ignored, determine (a) the speed of the block of mass M-7.00 kg. (b)...

  • Part 1) A small block travels up a frictionless incline that is at an angle of...

    Part 1) A small block travels up a frictionless incline that is at an angle of 30.0°above the horizontal. The block has speed 4.26 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down? Part 2) Complete the following exercises. (Assume g = 9.80 m/s2.) (a) A small block is released from rest at...

  • please help with part E please show work and explain SECTION A elastic- will be constant throughout. Also, the collisions are entirely that is, the total kinetic energy of the system motion takin...

    please help with part E please show work and explain SECTION A elastic- will be constant throughout. Also, the collisions are entirely that is, the total kinetic energy of the system motion taking place in either the northward or seuthward direction The setting: a room with a frictionless floor. A pushed northward, whereupon it begios siding with agon tiant sped of s o block of mass 1 kg is placed on the floor kg, head-on, and a second, stationary block,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT