Question

A traveling wave is described by the equation: TT y(x, t) = (0.35 cm) sin ( 3173 107t + 4 Find: a. the wavelength of the wave

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A travelling wave is described by the equation,

Y(x, t) = (0.35 cm ) sin(3πx - 10πt + π/4)

The general equation for a travelling wave is

Y(x, t) = (A cm ) sin(kx - ωt + ɸ)

We get by comparing the two equations,

Amplitude of the wave, A = 0.35 cm

Angular frequency of the wave, ω = 10π rad/s

Angular wave number of the wave, k = 3π rad/cm

a.

wavelength of the wave, λ = 2π/k = 2π/3π = 0.67 cm = 0.0067 m

b.

period of the wave, T = 2π/ ω = 2π/10π = 0.2 s

c.

speed of the wave, v = λ/T = 0.67/0.2 = 3.4 cm/s = 0.034 m/s

for a particle at x = 10 cm

d.

at time t = o

Y(x, t) = (0.35 cm ) sin( - 10πx10+ π/4) = 0.25 cm = 0.0025 m

e.

the maximum speed of the particle, Vmax = Aω = 0.35 x 10π = 11.0 cm/s = 0.11 m/s

the maximum acceleration of the particle, amax = Aω2 = 0.35 x 10π x 10π = 345 cm/s = 3.45 m/s

f.

at x = 0 and t = 0

Y(x, t) = (0.35 cm ) sin(π/4) = 0.25 cm = 0.0025 m

Add a comment
Know the answer?
Add Answer to:
A traveling wave is described by the equation: TT y(x, t) = (0.35 cm) sin (...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • The equation of a transverse wave traveling along a very long string is y = 6.28...

    The equation of a transverse wave traveling along a very long string is y = 6.28 sin(0.0223πx+ 3.63πt), where x and yare expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 4.95 cm when t = 0.876 s?

  • The equation of a transverse wave traveling along a very long string is given by y...

    The equation of a transverse wave traveling along a very long string is given by y = 6.1 sin(0.018πx + 3.1πt), where x and y are expressed in centimeters and t is in seconds. Determine the following values. (a) the amplitude cm (b) the wavelength cm (c) the frequency Hz (d) the speed cm/s (e) the direction of propagation of the wave +x−x    +y−y (f) the maximum transverse speed of a particle in the string cm/s (g) the transverse displacement at...

  • The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...

    The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.360 sin 14πt − 2πx + π 4 (a) What are the speed and direction of travel of the wave? speed m/s direction (b) What is the vertical position of an element of the string at t = 0, x = 0.200 m? m (c) What is the wavelength of the wave? m (d) What is the frequency of the wave? Hz (e)...

  • The equation describing a transverse wave on a string is y(x,t)=( 2.50mm )sin[( 168s?1 )t?( 42.1m?1...

    The equation describing a transverse wave on a string is y(x,t)=( 2.50mm )sin[( 168s?1 )t?( 42.1m?1 )x]. A. Find the wavelength of this wave. B. Find the frequency of this wave. C. Find the amplitude of this wave. D. Find the speed of motion of the wave. E. Find the direction of motion of the wave. F. Find the transverse displacement of a point on the string when t = 0.160s and at a position x = 0.140m.

  • 13. I The displacement of a wave traveling in the positive x-direction is D(x, t) (3.5 cm) sin(2....

    13. I The displacement of a wave traveling in the positive x-direction is D(x, t) (3.5 cm) sin(2.7x 1241), where x is in m and t is in s. What are the (a) frequency, (b) wavelength, and (c) speed of this wave? 13. I The displacement of a wave traveling in the positive x-direction is D(x, t) (3.5 cm) sin(2.7x 1241), where x is in m and t is in s. What are the (a) frequency, (b) wavelength, and (c)...

  • A transverse wave is given by the following equation: y (x,t) = (2.45 cm) cos [(0.420...

    A transverse wave is given by the following equation: y (x,t) = (2.45 cm) cos [(0.420 rad/cm)x + (5.20 rad/s)t] a) What are the wave's amplitude, frequency, period, and wavelength? b) What is the direction of wave travel, and what is the speed? c) What is the displacement of a particle at x = 5.00 m, at t = 1.00 min? Hint: pay attention to units!

  • The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+...

    The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+ 9.2От), where x and y are expressed in centimeters and tis in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x= 602 cm when t= 0.343 s? Unitsl cm (a) NumberT4.61...

  • 1. A transverse wave on a string is described by y( x,t) = (0.1m)sin(0.4x + 5t)...

    1. A transverse wave on a string is described by y( x,t) = (0.1m)sin(0.4x + 5t) where x is measured in meters and t in seconds. a) What is the speed and the direction of travel of this wave? . A transverse wave on a string is described by y( x,t) = (0.12m)sin(0.5x + 4t) where x is measured in meters and t in seconds. b) What is the speed of this wave?

  • A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for...

    A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for the vertical displacement y is given by y(x,t) = Asin(kx-wt), where A is the amplitude of the wave is much smaller than the wavelength, an individual particle in the string has constant horizontal displacement x but oscillates in the y-direction. The maximum speed of the particle in the y-direction is... Aw A^2w Aw^2 w/k k/w

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT