Question

A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for...

A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for the vertical displacement y is given by y(x,t) = Asin(kx-wt), where A is the amplitude of the wave is much smaller than the wavelength, an individual particle in the string has constant horizontal displacement x but oscillates in the y-direction. The maximum speed of the particle in the y-direction is...

Aw

A^2w

Aw^2

w/k

k/w

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • The equation of a transverse wave traveling along a very long string is y = 6.28...

    The equation of a transverse wave traveling along a very long string is y = 6.28 sin(0.0223πx+ 3.63πt), where x and yare expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 4.95 cm when t = 0.876 s?

  • A sinusoidal transverse wave is travelling along a string in the negative direction of an x...

    A sinusoidal transverse wave is travelling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t = 0; the y intercept is 4.0 cm. The string tension is 3.3 N, and its linear density is 44 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave, (e) Find the maximum transverse speed of a particle in the...

  • The equation of a transverse wave traveling along a very long string is given by y...

    The equation of a transverse wave traveling along a very long string is given by y = 6.1 sin(0.018πx + 3.1πt), where x and y are expressed in centimeters and t is in seconds. Determine the following values. (a) the amplitude cm (b) the wavelength cm (c) the frequency Hz (d) the speed cm/s (e) the direction of propagation of the wave +x−x    +y−y (f) the maximum transverse speed of a particle in the string cm/s (g) the transverse displacement at...

  • The equation of a transverse wave traveling on a string is given by y = A...

    The equation of a transverse wave traveling on a string is given by y = A sin(kx - ωt) . Data: A=11 mm, k=35 rad/m, ω= 500 rad/s. 1) What is the amplitude? 2) What is the frequency? 3) What is the wave velocity? 4) What is the wavelength? 5) For the same wave, find the maximum transverse speed of a particle in the string.

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

  • Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction...

    Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t 0; the y intercept is 4.0 cm. The string tension is 2.1 N, and its linear density is 21 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle...

  • A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction...

    A sinusoidal transverse wave of wavelength 19.0 cm travels along a string in the positive direction of an x axis. The displacement y of the string particle at x = 0 is given in the figure as a function of time t. The scale of the vertical axis is set by ys = 4 cm. The wave equation is to be in the form of y = ym sin(kx - ωt + φ). (a) At t = 0, is a...

  • The equation of a transverse wave traveling along a very long string is y = 6.93...

    The equation of a transverse wave traveling along a very long string is y = 6.93 sin(0.0395x+361), where and are expressed in centimeters and ta in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency. (d) the speed, (e) the direction of propagation of the wave and in the maximum transverse speed of a particle in the string (e) What is the transverse displacement at x4.63 cm whent 0.510 (a) Number Units (b) Number Units (c) Number Units...

  • The equation of a transverse wave traveling on a string is given by y - A...

    The equation of a transverse wave traveling on a string is given by y - A sin(kx - ot) Data: A-22 mm, k-13 rad/m, 240 rad/s. What is the amplitude? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 What is the wave velocity? Submit Answer Tries 0/99 What is the wavelength? Submit Answer Tries 0/99 For the same wave, find the maximum transverse speed of a particle in the string. Submit Answer Tries 0/99

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT