Question

The equation of a transverse wave traveling along a very long string is y = 6.93 sin(0.0395x+361), where and are expressed in
0 0
Add a comment Improve this question Transcribed image text
Answer #1


soch y = 6.93 sin (0.03950 re + 3.6 l T t] By comparing the given equn to the general equn of wave of form y yn sin (krewt to(6] ware length; know that k = 21 T [ k=0.03 95TT compairing do 21 K L withd= 2t 0.03957 1= 50.63 29 cmtо bе ала W= 21Tt we emparing comparing 3 - 60 6F aff 2.67 2.61 - If (. go5 H3 CS Scanned With CamScannerspeed of the the ware ve fr u= 1.805x50.6329 91.392 3845 cm/s ned with Scannerle] The direction of propagation of the ware is the – ive direction at the easies cre) sign sign in the given in got a (tive)

Add a comment
Know the answer?
Add Answer to:
The equation of a transverse wave traveling along a very long string is y = 6.93...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • The equation of a transverse wave traveling along a very long string is y = 6.28...

    The equation of a transverse wave traveling along a very long string is y = 6.28 sin(0.0223πx+ 3.63πt), where x and yare expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 4.95 cm when t = 0.876 s?

  • The equation of a transverse wave traveling along a very long string is given by y...

    The equation of a transverse wave traveling along a very long string is given by y = 6.1 sin(0.018πx + 3.1πt), where x and y are expressed in centimeters and t is in seconds. Determine the following values. (a) the amplitude cm (b) the wavelength cm (c) the frequency Hz (d) the speed cm/s (e) the direction of propagation of the wave +x−x    +y−y (f) the maximum transverse speed of a particle in the string cm/s (g) the transverse displacement at...

  • Chapter 16, Problem 010 The equation of a transverse wave traveling along a very long string...

    Chapter 16, Problem 010 The equation of a transverse wave traveling along a very long string is y 6.77 sin(0.0229x 4.31t), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) what is the transverse displacement at x = 2.50 cm when t...

  • The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+...

    The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+ 9.2От), where x and y are expressed in centimeters and tis in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x= 602 cm when t= 0.343 s? Unitsl cm (a) NumberT4.61...

  • The equation of a transverse wave traveling on a string is given by y = A...

    The equation of a transverse wave traveling on a string is given by y = A sin(kx - ωt) . Data: A=11 mm, k=35 rad/m, ω= 500 rad/s. 1) What is the amplitude? 2) What is the frequency? 3) What is the wave velocity? 4) What is the wavelength? 5) For the same wave, find the maximum transverse speed of a particle in the string.

  • Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction...

    Parts E-H please A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure shows a plot of the displacement as a function of position at time t 0; the y intercept is 4.0 cm. The string tension is 2.1 N, and its linear density is 21 g/m. Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle...

  • A sinusoidal wave moving along a string under tension is described by the equation D ?,?...

    A sinusoidal wave moving along a string under tension is described by the equation D ?,? =0.002sin(10?−120?)(inSIunit) Where ? is the transverse displacement of the string, ? is the distance along the string and ? is the time. Find a) Amplitude of the transverse displacement of the string b) The wavelength of the traveling wave c) Its frequency of oscillation, and d) The speed of propagation of the wave

  • A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for...

    A transverse wave is traveling on a string stretched along the horizontal x-axis. The equation for the vertical displacement y is given by y(x,t) = Asin(kx-wt), where A is the amplitude of the wave is much smaller than the wavelength, an individual particle in the string has constant horizontal displacement x but oscillates in the y-direction. The maximum speed of the particle in the y-direction is... Aw A^2w Aw^2 w/k k/w

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT