Question

Considering multiple linear regression models, we compute the regression of Y, an n x 1 vector, on an n x (p+1) full rank mat
(b) (6 points) The quantity yi – xßo is the residual for the ith case when B is estimated without the ith case. Use BO = Ⓡ +
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer:-

Given that:-

For a linear model where is full tank Y = X + least square estimator of \beta is Н. where  H is X(XTX)-?x which is symmetric.

For a singular matrix A we have A^{-1}A=I\Rightarrow (A^{-1}A)^{T}=I\Rightarrow A^{T}(A^{-1})^{T}=I (1-P) = (AT)-1.

This result is in showing H is symmetric ,matrix.

X_{n\times (p+1)} in forall rank matrix and, H=X(X^{T}X)^{-1}X^{T}

(a)\underset{\sim}{y}=\begin{pmatrix} 1\\ 0\\ 0\\ \vdots \\ 0 \end{pmatrix}_{n\times 1}

Now, \underset{\sim}{\widehat{y}}=H\underset{\sim}{y}=X(X^{T}X)^{-1}X^{T}\underset{\sim}{y}

So,H\underset{\sim}{y}=\bigl(\begin{smallmatrix} h_{11} & h_{12}& \cdots & h_{1n}\\ h_{21}&h_{22} & \cdots &h_{2n} \\ \vdots & & & \\ h_{n1}& h_{n2} & \cdots & h_{nn} \end{smallmatrix}\bigr)\begin{pmatrix} 1\\ 0\\ 0\\ \vdots \\ 0 \end{pmatrix}

=\begin{pmatrix} h_{11}\\ h_{21}\\ \vdots \\ \vdots \\ h_{n1} \end{pmatrix}

=\begin{pmatrix} h_{11}\\ h_{12}\\ \vdots \\ \vdots \\ h_{1n} \end{pmatrix}

So, e_{i}=y_{i}-\widehat{y_{i}}=\begin{pmatrix} 1\\ 0\\ \vdots \\ \vdots \\ 0 \end{pmatrix}-\begin{pmatrix} h_{11}\\ h_{12}\\ \vdots \\ \vdots \\ h_{1n} \end{pmatrix}

=\begin{pmatrix} 1-h_{11}\\ -h_{12}\\ \vdots \\ \vdots \\ -h_{1n} \end{pmatrix}

but we know that H is symmetric So, h_{12}=h_{21}

H^{T}=(X(X^{T}X)^{-1}X^{T})^{T}

=(X^{T})^{T}((X^{T}X)^{-1})^{T}X^{T}

=X(X^{T}X)^{-1}X^{T}

A^{-1}A=I\Rightarrow (A^{-1}A)^{T}=I

\Rightarrow A^{T} (A^{-1})^{T}=I

\Rightarrow (A^{-1})^{T}=(A^{T} )^{-1}

for sample invertible matrix A so, ((X^{T}X)^{-1})^{T}=((X^{T}X)^{T})^{-1}

=(X^{T}X)^{-1}

(b)\widehat{\beta }_{(i)}=\widehat{\beta }+\frac{(X^{T}X)^{-1}x_{i}e_{i}}{1-h_{ii}}

Now, \underset{\sim}{x_{i}}\widehat{\beta }_{(i)}=\underset{\sim}{x_{i}}(\widehat{\beta }+\frac{(X^{T}X)^{-1}\underset{\sim}{x_{i}^{T}}e_{i}}{1-h_{ii}})

=\underset{\sim}{x_{i}}\widehat{\beta }+\frac{\underset{\sim}{x_{i}}(X^{T}X)^{-1}\underset{\sim}{x_{i}^{T}}e_{i}}{1-h_{ii}})

H=X(X^{T}X)^{-1}X^{T}=\begin{pmatrix} \underset{\sim}{x_{1}}\\ \underset{\sim}{x_{2}}\\ \vdots \\ \underset{\sim}{x_{n}} \end{pmatrix}(X^{T}X)^{-1}(\underset{\sim}{x_{1}^{T}}........\underset{\sim}{x_{n}^{T}})=\bigl(\begin{smallmatrix} \underset{\sim}{x_{1}} & (X^{T}X)^{T} &\underset{\sim}{x_{1}^{T}} & \cdots & \underset{\sim}{x_{1}} &(X^{T}X) ^{-1} &\underset{\sim}{x_{n}^{T}} \\ \vdots & & & & & & \\ \underset{\sim}{x_{n}}& (X^{T}X) ^{-1}& \underset{\sim}{x_{1}}^{T} &\cdots & \underset{\sim}{x_{n}} &(X^{T}X)^{T} \underset{\sim}{x_{n}}^{T}& \end{smallmatrix}\bigr)

=\begin{pmatrix} \underset{\sim}{x_{1}}\\ \underset{\sim}{x_{2}}\\ \vdots \\ \underset{\sim}{x_{n}} \end{pmatrix} So, h_{11}=\underset{\sim}{x_{1}}(X^{T}X)^{-1}\underset{\sim}{x_{1}^{T}}....h_{in}=\underset{\sim}{x_{1}}(X^{T}X)^{-1}\underset{\sim}{x_{n}^{T}}

y_{i}-x_{i}\widehat{\beta }_{(i)}=y_{i}-x_{i}\widehat{\beta }-\frac{\underset{\sim}{x_{i}}(X^{T}X)^{-1}\underset{\sim}{x_{i}^{T}}e_{i}}{1-h_{ii}}=e_{i}-\frac{h_{ii}e_{i}}{1-h_{ii}}

So, there is problem in \widehat{\beta }_{(i)}, it has to be

\widehat{\beta }_{(i)}=\widehat{\beta }-\frac{(X^{T}X)^{-1}\underset{\sim}{x_{i}^{T}}e_{i}}{1-h_{ii}}

Then we have y_{i}-x_{i}\widehat{\underset{\sim}{\beta }}_{(i)}=e_{i}+\frac{h_{ii}e_{i}}{1-h_{ii}}=\frac{e_{i}}{1-h_{ii}}

Add a comment
Know the answer?
Add Answer to:
Considering multiple linear regression models, we compute the regression of Y, an n x 1 vector,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT