Question

1 A= Find A1017 and Justify your answer 1 ✓2 B = O 01 3 Find B” and Justify your answer. 0 3

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hey there stay home and stay safe

\small A=\begin{bmatrix} \frac{1}{\sqrt2} & -\frac{1}{\sqrt2}\\ \frac{1}{\sqrt2} & \frac{1}{\sqrt2}\\ \end{bmatrix}\\ A^2=\begin{bmatrix} \frac{1}{\sqrt2} & -\frac{1}{\sqrt2}\\ \frac{1}{\sqrt2} & \frac{1}{\sqrt2}\\ \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt2} & -\frac{1}{\sqrt2}\\ \frac{1}{\sqrt2} & \frac{1}{\sqrt2}\\ \end{bmatrix}=\begin{bmatrix} \frac{1}{2}-\frac{1}{2} & -\frac{1}{2}-\frac{1}{2}\\ \frac{1}{2}+\frac{1}{2} & -\frac{1}{2}+\frac{1}{2} \end{bmatrix}=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\\ A^4=A^2.A^2=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\\ =\begin{bmatrix} 0-1 & 0+0\\ 0+0 & -1+0 \end{bmatrix}=\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}=(-1)\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}=(-1)I_2\\ A^{1017}=A^{1016}A=(A^4)^{254}A=(-1)^{254}I_2^{254}A=(1)I_2A=A=\begin{bmatrix} \frac{1}{\sqrt2} & -\frac{1}{\sqrt2}\\ \frac{1}{\sqrt2} & \frac{1}{\sqrt2}\\ \end{bmatrix}

....

\small B=\begin{bmatrix} \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} \end{bmatrix}=\frac{1}{3}\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\\ B^2=\begin{bmatrix} \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} \end{bmatrix}\begin{bmatrix} \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{3} \end{bmatrix}=\begin{bmatrix} \frac{1}{3^2} & \frac{2}{3^2}\\ 0 & \frac{1}{3^2} \end{bmatrix}=\frac{1}{3^2}\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}\\ B^3=\frac{1}{3}\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\frac{1}{3^2}\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}=\frac{1}{3^3}\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}=\frac{1}{3^3}\begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}\\ $So we claim that $\\ B^n=\frac{1}{3^n}\begin{bmatrix} 1 & n\\ 0 & 1 \end{bmatrix}\\ $To prove that we use principal of induction\\ Let it be true for n=k$\\ B^k=\frac{1}{3^k}\begin{bmatrix} 1 & k\\ 0 & 1 \end{bmatrix}\\

\small B^{k+1}=B^kB=B^n=\frac{1}{3^k}\begin{bmatrix} 1 & k\\ 0 & 1 \end{bmatrix}\frac{1}{3}\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}=\frac{1}{3^{k+1}}\begin{bmatrix} 1 & k+1\\ 0 & 1 \end{bmatrix}\\ $Then the statement is true for n=k+1 if it be true for n=k\\ Therefore by principal of induction$\\ B^n=\frac{1}{3^n}\begin{bmatrix} 1 & n\\ 0 & 1 \end{bmatrix}

And please leave a like. Thank you.

Add a comment
Know the answer?
Add Answer to:
1 A= Find A1017 and Justify your answer 1 ✓2 B = O 01 3 Find...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT