Question

R(S) + C(s) K $++383+10s2+30s+150 1 A feedback system is described on the figure above. a. If K=450 find the number of closed

0 0
Add a comment Improve this question Transcribed image text
Answer #1

@ Transfer function I + GOS) HCS) 1 + = 0 k (54+353 +105²4305+150) ht 55 +354 4 1053 + 30 32 +150 st 450 = 0 (K=450) 55 5 1055 10 (b) Now, to find critical value of k, 150 Criticall 54 4500 – 10% =0 E 4500-10k 52 30 E- (450-K) ik= 450 E 3 30 30 دی 3

If this is helpful, please UPVOTE. Thank you !!

Add a comment
Know the answer?
Add Answer to:
R(S) + C(s) K $++383+10s2+30s+150 1 A feedback system is described on the figure above. a....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A feedback system is described on the figure above. a. If K=450 find the number of...

    A feedback system is described on the figure above. a. If K=450 find the number of closed-loop poles located on the RHS, LHS and on the jw-axis. b. Find the value of the gain K, which will produce undamped system step response (critical gain). Find the respective oscillating frequency. c. For which values of the system will be (i) stable, (ii) not stable. RS) Cs) K s++38+10:2430s+150 0

  • Upload your answers to this question below or via the submission folder on Brightspace. R(s) +...

    Upload your answers to this question below or via the submission folder on Brightspace. R(s) + к s++38+10s-+30s+150 A feedback system is described on the figure above. a. If K=450 find the number of closed-loop poles located on the RHS, LHS and on the jw-axis. b. Find the value of the gain K, which will produce undamped system step response (critical gain). Find the respective oscillating frequency. c. For which values of K the system will be (i) stable, (ii)...

  • Consider the unity feedback system is given below R(S) C(s) G() with transfer function: G(s) =...

    Consider the unity feedback system is given below R(S) C(s) G() with transfer function: G(s) = K s(s + 1)(s + 2)(8 + 6) a) Find the value of the gain K, that will make the system stable. b) Find the value of the gain K, that will make the system marginally stable. c) Find the actual location of the closed-loop poles when the system is marginally stable.

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The...

    Determine: 1. The transfer function C(s)/R(s). Also find the closed-loop poles of the system. 2. The values of the undamped natural frequency ωN and damping ratio ξ of the closed-loop poles. 3. The expressions of the rise time, the peak time, the maximum overshoot, and the 2% settling time due to a unit-step reference signal. For the open-loop process with negative feedback R(S) Gp(S) C(s) H(s) 103 Go(s) = 1 , Gp(s)- s(s + 4) Determine: 1. The transfer function...

  • 2. For the feedback system shown below: X 1 K s+3 S s+10 XX ) ....

    2. For the feedback system shown below: X 1 K s+3 S s+10 XX ) . - a Find the open loep gain. G6) k b. Find the closed foop galn S410 (EnXey& ke -3 . Find the open loop poles c. d. Find the epen loop zeros . Find K that makes 4 one of the closed loop poles. (h+5) Scanned by CamScanne

  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • Problem 5. (20pts) The open-loop transfer function of a unity feedback system G(8) -- +2) a)...

    Problem 5. (20pts) The open-loop transfer function of a unity feedback system G(8) -- +2) a) Locate open-loop zeros and open-loop poles. b) Construct the root-locus diagram as 0 <K <oo. Mark the portions of the real axis that belong to the root locus - Mark with K =0 the point where the root locus bra O the point where the root locus branches start and with K = oo the point where the branches end. - Find break-away and/or...

  • steps R(s) E(s) C(s) G(s) FIGURE P9.1 FIGURE P9.2 9. Consider the unity feedback system shown...

    steps R(s) E(s) C(s) G(s) FIGURE P9.1 FIGURE P9.2 9. Consider the unity feedback system shown in Figure P9.1 with [Section: 9.3] K G(s) (s+4)3 a. Find the location of the dominant poles to yield a 1.6 second settling time and an overshoot of 25%. b. If a compensator with a zero at -1 is used to achieve the conditions of Part a, what must the angular contribution of the compensator pole be? c. Find the location of the compensator...

  • Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function...

    Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function G(s) is plotted below: (a) Find the approximate gain margin and phase margin of the system? Is the closed-loop system stable? (b) Suppose in the closed-loop system (s) is replaced with KG(8). What is the range of K so that the closed-loop system is stable? (C) Determine the system type of G(s). (d) Estimate the steady-state errors of the closed-loop system for tracking the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT