Question

Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function G(s) is plotted below: (
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Question a

The gain margin is the gain at phase crossover frequency. And phase crossover frequency is the frequency where the phase angle is -180.

The phase margin is the phase +180 at gain crossover frequency. And gain crossover frequency is the frequency where the gain is 0 dB.

From the bode plot shown below, the gain and phase margins are computed.

50 Bode Diagram of G(s) -50 -100 160 -90 -180 -270 10 10 10 10 10 10 Phase (deg) Magntude (dB)

The gain margin : 12 dB

phase margin: 108 degrees.

The gain and phase margins are positive. Therefore the system is stable.

Question b

from the above question we obtained the gain margin which is the maximum value of gain K before the system becomes unstable.

Therefore K = 12 dB = 4.

Question c

From the magnitude response it is observed that the slope of curve at zero frequency is close to -20 dB /decade.

Therefore the system is of type 1.

Question d

For type 1 system, the steady state error to step input is zero.

For type 1 system the steady state error to unit ramp input is non-zero.

Add a comment
Know the answer?
Add Answer to:
Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • A unity gain negative feedback system has an open-loop transfer function given by 4. s) =...

    A unity gain negative feedback system has an open-loop transfer function given by 4. s) = s(1 + 10s)(1 + 10s)? Draw a Bode diagram for this system and determine the loop gain K required for a phase margin of 20 deg. What is the gain margin? 5. We are given the closed-loop transfer function 10(s + 1) T(s) = 82+98+10 for a "unity feedback" system and asked to find the open-loop transfer function, generate a log-magnitude-phase plot for both...

  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • 5. The open loop transfer function of a control system is s(1 +0.5s)(1 0.67s) Draw a Bode diagram...

    5. The open loop transfer function of a control system is s(1 +0.5s)(1 0.67s) Draw a Bode diagram for the system and determine the phase margin and gain margin. Is the closed loop system stable? (a) (17 marks) (b) By how much must the gain be adjusted for a phase margin of 50°? (8 marks) 5. The open loop transfer function of a control system is s(1 +0.5s)(1 0.67s) Draw a Bode diagram for the system and determine the phase...

  • 3. Construct the bode plot on a semilog Graph-paper for a unity feedback system whose open...

    Construct the bode plot on a semilog Graph-paper for a unity feedback system whose open looptransfer function is given by \(G(S)=\frac{100}{S(S+1)(2+S)} .\) From the bode plot determinea) Gain and phase crossover frequencies.b) Gain and Phase margin, andc) Stability of the closed loop system

  • P4) Consider a system with open loop transfer function of G(s) ? a) Sketch the Bode...

    P4) Consider a system with open loop transfer function of G(s) ? a) Sketch the Bode plot. b) Design a PI controller to make the system have a phase margin of 45°. Assume that the open loop s+1)3 gain results in acceptable steady-state error

  • Consider the closed loop system defined by the following block diagram. a) Compute the transfer function...

    Consider the closed loop system defined by the following block diagram. a) Compute the transfer function E(s)/R(s). b) Determine the steady state error for a unit-step 1. Controller ant Itly Ro- +- HI- 4단Toy , c) d) e) reference input signal. Determine the steady state error response for a unit-ramp reference input signal. Determine the locations of the closed loop poles of the system. Select system parameters kp and ki in terms of k so that damping coefficient V2/2 and...

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

  • show steps please 10 A second-order open-loop system with transfer function G(s) = is to be...

    show steps please 10 A second-order open-loop system with transfer function G(s) = is to be $2+45+10 controlled with unity negative feedback. (a) Derive the error transfer functions E(s) of the closed-loop system subjected to a unit step input, when using a P controller and a PI controller, respectively, in terms P control gain kp, and PI control gains kp and ki, respectively. [7] (b) Determine the steady-state errors in (a). Briefly comment on the differences in control performance by...

  • 7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function...

    7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function is G (s) Design a PID controller, so that the open s(10s) corresponding closed-loop poles are -2+jl and -5. (10 scores) 7. For a negative feedback control system with unit feedback gain, its open-loop 100 transfer function is G (s) Design a PID controller, so that the open s(10s) corresponding closed-loop poles are -2+jl and -5. (10 scores)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT