Question

P4) Consider a system with open loop transfer function of G(s) ? a) Sketch the Bode plot. b) Design a PI controller to make the system have a phase margin of 45°. Assume that the open loop s+1)3 gain results in acceptable steady-state error

0 0
Add a comment Improve this question Transcribed image text
Answer #1

5 5 d B t 6 phapp plot SO (Opl- 20 0 20 40 60 .。

Add a comment
Know the answer?
Add Answer to:
P4) Consider a system with open loop transfer function of G(s) ? a) Sketch the Bode...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

  • Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch...

    Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch the bode diagram for G. 2. Knowing that a proportional controller with gain 1000 in a unity feedback loop with G results in an unstable system, what are the phase and gain margins of G? 3. Design a proportional controller that achieves a gain margin of 40dB. gain of 10dB at 0.01rad/s and a gain margin 4. Design that is infinity. compensator that results...

  • The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode...

    The transfer function of the given physical system is 2500 Gp(s)-T-1000 Part 3 1. Frequency response (a) Draw the bode plot of open-loop transfer function when K (b) Use bode plot of open-loop transfer function to determine the type of system (do not use transfer function) (c) For what input the system will have constant steady-state error (d) for the unit input in item (c) calculate the constant steady-state error.(Use bode plot to calculate the error.) (e) Design a lead...

  • 3. Design a PI or PD controller for the system G(8) = s(s+10) to meet the...

    3. Design a PI or PD controller for the system G(8) = s(s+10) to meet the following specifications • Zero steady state error for unit step reference input • tr< 0.12 - . %OS < 10%. (a) Determine the low frequency gain, crossover frequency and phase margin necessary to meet the specifications. (b) Decide if C(s) needs an integrator. Plot the Bode plot of either G(s) or G(s)/s, depending on your choice. (c) Use sisotool (or iteration) to choose a...

  • show steps please 10 A second-order open-loop system with transfer function G(s) = is to be...

    show steps please 10 A second-order open-loop system with transfer function G(s) = is to be $2+45+10 controlled with unity negative feedback. (a) Derive the error transfer functions E(s) of the closed-loop system subjected to a unit step input, when using a P controller and a PI controller, respectively, in terms P control gain kp, and PI control gains kp and ki, respectively. [7] (b) Determine the steady-state errors in (a). Briefly comment on the differences in control performance by...

  • Consider the unity-feedback system shown below: R(s) E(s) input: r(t), output: y(t) C(s) P(s) error: e()...

    Consider the unity-feedback system shown below: R(s) E(s) input: r(t), output: y(t) C(s) P(s) error: e() r(t) y(t) closed-loop transfer-function: Hyr(sD t the closed-loop transfer-function be Hyr(s) Y (s) R(s) Let the transfer-function of the plant be P(s) 10 s (s 1) (s 5) The open-loop transfer-function is G(s) P(s) C(s) DESIGN OBJECTIVES: Find a controller C(s) such that the following are satisfied i) The closed-loop system is stable. ii) The steady-state error ess due to a unit-ramp input r(t)...

  • 7. Consider the system with transfer function 100 G(s) = (s + 202 (a) Sketch the...

    7. Consider the system with transfer function 100 G(s) = (s + 202 (a) Sketch the bode plot and Nyquist diagrams and determine the range of proportional closed loop gain K for stability. (b) What positive gain K will yield a phase margin of 30 degrees ?

  • Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function...

    Problem 3. For the above feedback system, the bode diagram of the stable open-loop transfer function G(s) is plotted below: (a) Find the approximate gain margin and phase margin of the system? Is the closed-loop system stable? (b) Suppose in the closed-loop system (s) is replaced with KG(8). What is the range of K so that the closed-loop system is stable? (C) Determine the system type of G(s). (d) Estimate the steady-state errors of the closed-loop system for tracking the...

  • Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) =...

    Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) = RS), with sim- ple feedback an a dynamic compensator to meet the following specifications: (a) a cross over frequency of we 3 [rad/sec] (b) a phase margin better than 45. (c) a steady state error when tracking a step input < 5%. in H(s) G(sRecall that Bode plots are applied to the loop gain. out

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT