Question

3. Design a PI or PD controller for the system G(8) = s(s+10) to meet the following specifications • Zero steady state error
0 0
Add a comment Improve this question Transcribed image text
Answer #1

SOLUTION:::::Solution :- 1. Given Data, Step: li- q (s) = 5(+10) Here, meet following Specification Eero Steady slate error for unit stepStep 2 :- TT-0 Rise time tr = wn Rise time tr = TO (n=1 2Ęwn = yor tr. = 8x1=5 : tr&=5 tre 180-P 1-JT-(5)? 180-240 tr = 51-25. G(s) =-909_tanywe) for phase cross over frequency |G(s) I ope ope w/ pc to -1800 - - wpc Sw?pc +10 -180+90 - - - Pan ContoWgc, = 0.9 rad (sec Wg C2 = -10.09 rad/sec L 10 / phase margin = 180 +0 at Wge = 0.09 q=-909-Tari (0:09) Q = -90-0.51 Q : -9Initial Slopes - 20dB x1 dec final slope - - 20db rool der x (P-2) = -20dB . dec (2-0) .=-40dBldec . Magnitede - 1. WJ w2110rad/sec Gain dB Initial slope -20 dB/sec final slope -40dB/sec @! Resulting controller CCs), for PI+PD controller I+ TDS wit

Add a comment
Know the answer?
Add Answer to:
3. Design a PI or PD controller for the system G(8) = s(s+10) to meet the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Answer all parts and show all work. Design a Pl or PDcontroller for the system Go)+...

    Answer all parts and show all work. Design a Pl or PDcontroller for the system Go)+ 10 to meet the following specifications Zero steady state error for unit step reference input ·4 < 0.12s . %OS < 10%. (a) Determine the low frequency gain, crossover frequency and phase margin necessary to meet the (b) Decide if C() needs an integrator. Plot the Bode plot of either G(s) or G(o)/s, depending on (c) Use sisotool (or iteration) to choose a gain...

  • 4. You want to design an orientation controller for a satellite system whose thrusters provide a...

    4. You want to design an orientation controller for a satellite system whose thrusters provide a torque T to modify the angular position 0 with transfer function (s) 0.1 G(s) T(s) $2 Y() R(s) G(s) C(s) You want to add damping to the system to minimize any oscillations (%OS < 5%) but still maintain a 1% settling time of less than 60 s to a unit step input. I(a) Sketch the allowable pole locations in the complex plane to meet...

  • Consider the unity-feedback system shown below: R(s) E(s) input: r(t), output: y(t) C(s) P(s) error: e()...

    Consider the unity-feedback system shown below: R(s) E(s) input: r(t), output: y(t) C(s) P(s) error: e() r(t) y(t) closed-loop transfer-function: Hyr(sD t the closed-loop transfer-function be Hyr(s) Y (s) R(s) Let the transfer-function of the plant be P(s) 10 s (s 1) (s 5) The open-loop transfer-function is G(s) P(s) C(s) DESIGN OBJECTIVES: Find a controller C(s) such that the following are satisfied i) The closed-loop system is stable. ii) The steady-state error ess due to a unit-ramp input r(t)...

  • Consider a unity-feedback control system with a PI controller Gpr(s) and a plant G(s) in cascade. In particular, the plant transfer function is given as 2. G(s) = s+4, and the PI controller trans...

    Consider a unity-feedback control system with a PI controller Gpr(s) and a plant G(s) in cascade. In particular, the plant transfer function is given as 2. G(s) = s+4, and the PI controller transfer function is of the forrm KI p and Ki are the proportional and integral controller gains, respectively where K Design numerical values for Kp and Ki such that the closed-loop control system has a step- response settling time T, 0.5 seconds with a damping ratio of...

  • Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) =...

    Assignment 3: Frequency Domain Controller Design using Bode-plots 2 Augment the open loop plant G(s) = RS), with sim- ple feedback an a dynamic compensator to meet the following specifications: (a) a cross over frequency of we 3 [rad/sec] (b) a phase margin better than 45. (c) a steady state error when tracking a step input < 5%. in H(s) G(sRecall that Bode plots are applied to the loop gain. out

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • Assignment 3: Frequency Domain Controller Design using Bode-plots 10 2 Augment the open loop plant G()...

    Assignment 3: Frequency Domain Controller Design using Bode-plots 10 2 Augment the open loop plant G() +27 with sim ple feedback an a dynamic compensator to meet the following specifications: (a) a cross over frequency of w 3 [rad/sec). (b) a phase margin better than 45o (c) a steady state error when tracking a step input < 5%. in H(s) G(s) Recall that Bode plots are applied to the loop gain. out

  • PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s)...

    PD & PID controller design Consider a unity feedback system with open loop transfer function, G(s) = 20/s(s+2)(8+4). Design a PD controller so that the closed loop has a damping ratio of 0.8 and natural frequency of oscillation as 2 rad/sec. b) 100 Consider a unity feedback system with open loop transfer function, aus. Design a PID controller, so that the phase margin of (S-1) (s + 2) (s+10) the system is 45° at a frequency of 4 rad/scc and...

  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • 3. Consider the transfer function: ls0 (s +0.5(s +2(s +3)(s +4(s+10) (s +3.5) (s +4.5) (s 5.5) (s...

    3. Consider the transfer function: ls0 (s +0.5(s +2(s +3)(s +4(s+10) (s +3.5) (s +4.5) (s 5.5) (s 6.5)(s +20.5) (a) [6] Find the phase angle (degrees) and gain (in dB, Bode units) for the following frequencies (in rad/sec) rail Gp(ju) dB 0.1 21 56 b) [3 What is the gain crossover frequency for this system? (c) [8] Design a PD controller so that-0.3 ± 0.3] is a pole of the closed-loop system. 3. Consider the transfer function: ls0 (s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT